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We make theoretical comparisons among five coefficients — Cronbach’s o, Revelle’s [3, McDonald’s
®y,, and two alternative conceptualizations of reliability. Though many end users and psychometricians
alike may not distinguish among these five coefficients, we demonstrate formally their nonequivalence.
Specifically, whereas there are conditions under which o, B, and @y are equivalent to each other and to
one of the two conceptualizations of reliability considered here, we show that equality with this concep-
tualization of reliability and between O and (®; holds only under a highly restrictive set of conditions and
that the conditions under which B equals ), are only somewhat more general. The nonequivalence of
o, [3 and (;, suggests that important information about the psychometric properties of a scale may be
missing when scale developers and users only report O as is almost always the case.

1. Introduction

In this article, we make theoretical comparisons among five coefficients — Cronbach’s o,
Revelle’s B, McDonald’s ®, and two alternative conceptualizations of reliability — indexing
internal psychometric properties of scale scores applicable with effect indicator scales when we
are interested in sampling fluctuations resulting from the sampling of items (Lord, 1955).! As
our general model, we adopt the hierarchical factor model (Schmid & Leiman, 1957; Tucker,
1940; Wherry, 1959). We chose this model because one of the coefficients included in our com-
parisons is defined only within the hierarchical factor model and each of the other four indices
can under many conditions be expressed in terms of the parameters of this model. Though many
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! As defined by Bollen and Lennox (1991) an effect indicator scale is comprised of indicators that are dependent on
the latent variable they are measuring. In contrast, Bollen and Lennox define a causal indicator scale as being comprised
of indicators that cause the latent variable they are measuring.
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end users and psychometricians alike do not appear to distinguish among the five coefficients
compared here, we will demonstrate formally their nonequivalence in this article. Whereas there
are conditions under which a, B, and wy, are equivalent to each other and to one of the two concep-
tualizations of reliability considered here, we will show that equality with this conceptualization
of reliability and between o and ®j, holds only under a highly restrictive set of conditions and that
the conditions under which 8 equals ®;, are only somewhat more general.

Though our results are related to ones reported in earlier articles, there are some important
differences. Whereas Lord and Novick (1968) and Novick and Lewis (1967) compared o with
reliability, they did not consider B and wy, as we have done. McDonald (1970, 1999) considered
the relation between o and @y, only and did not consider conditions of multidimensionality as we
have done. Revelle (1979) provided examples in which o can be high when B (and ) equals 0.
As his examples covered only a limited set of conditions, however, the generality of his results
was unclear unlike the more general results of our formal comparison which shows that o can
be either less than or greater than w, depending on several factors which we explicate. Finally,
models having unequal factor loadings and accounting for error covariances — which bear some
similarities to the group factors we consider in that both error covariances and group factors
account for covariances among items that cannot be accounted for by a general factor — have
been considered by Green and Hershberger (2000), Komaroff (1997), and Raykov (1997, 1998a,
2001a, b). However, each of these authors has concluded that there are conditions in which o
overestimates reliability in contrast to our conclusion that o is a lower bound to reliability. The
reason for this conflict is that we consider group factor variance to be a component of true scores
and thus a contributor to reliable variance whereas Green and Hershberger (2000), Komaroff
(1997), and Raykov (1997, 1998a, b, 2001a, 2001b) do not consider what they call error covari-
ance to be a component of true scores. An advantage of our approach of using group factors to
account for item covariances that cannot be accounted for by a general factor is that it will often
be more parsimonious. One has to estimate [m(m — 1)]/2 paths when accounting for these item
covariances using error covariances to model the associations among the m items loading on a
particular group factor that are modeled via estimating m paths using our group factor approach.?
In addition, Green and Hershberger (2000), Komaroff (1997), and Raykov (1997, 1998a, b, 2001a,
2001b) do not consider B and .

2. The Hierarchical Factor Model and McDonald’s oy,

Before defining my,, it is useful to review the basic structure of the hierarchical factor model.
Within the hierarchical factor model, it is assumed that observed scores may be decomposed into
four parts

x=cg+Af+ Ds +e, N

where x is the k x 1 vector of observed scores on the k scale items, g is a general factor (i.e., a factor
that is common to all k scale items), ¢ is a k x 1 vector of unstandardized general factor loadings,
S isar x 1 vector of group factors (i.e., factors that are common to some but not all k items)
with r < k, A is the k x r matrix of unstandardized group factor loadings, s is the k x 1 vector
of specific factors that are unique to each item, D is the k x k diagonal matrix of unstandardized
factor loadings on the item specific factors and e is the k x 1 vector of random error scores. The

21t is obvious that [m(@m — 1)/2] > m only when m > 3. What may be less obvious is that even when m = 2, the
number of group factor loadings estimated will equal the number of error covariances estimated as a constraint has to be
imposed on one of the two group factor loadings for identification purposes. Thus, our group factor approach will not only
usually be more parsimonious, but will always be at least as parsimonious, as an error covariance approach that models
the associations among the m items loading on a particular group factor.
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model expressed in (1) assumes also that all factors (g, f and s) are uncorrelated with each other
and with e, and without loss of generality that the variance of each of the common factors (g and
those in f) equals 1. In addition, each of the group factors (in f) are required to have non-zero
loadings on at least three indicators to identify the model in the absence of additional constraints
(e.g., Bollen, 1989).

Given the model in (1), the proportion of variance in the scale scores accounted for by a
general factor’ — Omegayq achical (©1) — is defined as

1cec’1

= Var ()’ @

®p

where Var(X) is the variance in the scale scores obtained by summing the k indicators comprising
the scale.

The parameter expressed in (2) was originally identified by McDonald (1985, 1999). Specifi-
cally, if Ag; is the loading of indicator i on the general factor then (2) is algebraically equivalent to
McDonald’s (1985) Equation 7.3.8 or to McDonald’s (1999) Equation 6.20a that is more efficient
to use when making calculations by hand and, using our notation of ®, reads

k 32
wp = M (3)
ar(X)

However, McDonald (Equation 7.3.9., 1985; Equation 6.2.1, 1999) also identified an expression
that is algebraically equivalent to the reliability coefficient expressed in (12) below and used the
same label of o for it and (3). In differentiating the labels for these two parameters to prevent
confusing them in the future, two considerations led us to retain McDonald’s (1985, 1999) label
of ® for (12) but give (2) the new label of ;. The primary consideration was that the parameter
expressed by (2) — or equivalently by (3) — is specific to the hierarchical factor model whereas
(12) is not (McDonald, personal communication, October 25, 2002). In addition, other references
in the literature to McDonald’s ® have tended to focus on expressions equivalent to (12) (e.g.,
Raykov & Shrout, 2002).

3. Revelle’s (1979) B

Revelle (1979) proposed an index labeled coefficient beta () that he showed equals the
proportion of variance in scale scores accounted for by a general factor under more general condi-
tions than o. As we shall demonstrate, however, those conditions are only somewhat more general
than is the case for o. The formal definition of B is p = k*G; j+/Var(X) where G;: is the average
covariance between items in different halves for the worst split (i.e., the split that minimizes
this average covariance but the split “halves” can be of unequal lengths). The relation between
o and P is readily apparent from an examination of Cronbach’s (1951, p. 304) Equation 16 for
coefficient o

k2G;;
o0=—_"- 4)
Var(X)

where G;; is the average interitem covariance. Thus, it is obvious that B<o.

3Though expressed in terms corresponding to a scale obtained by summing the k indicators comprising the scale, this
expression for @ also provides the proportion of variance in the scale score accounted for by a general factor for scale
scores obtained by averaging the k items. Please contact Richard E. Zinbarg for an algebraically equivalent expression to
(2) that is expressed in terms of the variance in scale scores obtained by averaging rather than summing the & items.
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4. Two Factor Analytic Conceptualizations of Reliability: p and ®

Before discussing relations with reliability, we must first define precisely what we mean
by reliability. As noted by several authors (e.g., Bollen, 1989, Joreskog, 1974; Lord & Novick,
1968), fundamental to understanding the link between the factor analytic model and the classical
test theory concept of reliability is the relation of the classical test theory notion of true score to
the latent factors of factor analysis. In classical test theory, observed scores on the k items of a
scale are decomposed into two parts x = ¢ + e where ¢ is the k x 1 vector of true scores and
e is the k x 1 vector of random error scores that are uncorrelated with ¢. Given the hierarchical
factor model in (1), one can define two alternative reliability indices depending upon whether
one believes that the vector of specific factors, s, can be meaningfully differentiated from e and
included as part of the definition of true score. One position is that this distinction can be made
in principle in that the specific factors are systematic and can contribute to correlations between
the items and other (non-test) variables whereas the components of e are random errors that
can only attenuate correlations with other variables. Advocates of this position would also argue
that whereas specific factors and random errors are typically confounded empirically, they can
sometimes be differentiated from each other with the use of appropriate longitudinal designs and
analyses.4 Following Lord and Novick (1968, p. 535) and McDonald (1970), when we relate ¢ to
the factors in a hierarchical factor model we obtain

t=cg+ Af + Ds. 5)
Given the definition of true score expressed in (5), reliability is given by

1ec'l1 +1"AA'1 +1"DD’1
Var(X)

An alternative position is that there is no good ground for distinguishing specific factors
from the components of e (e.g., Bollen, 1989; McDonald, 1985, 1999). Thus, it has been argued
that both s and e are errors in x with respect to measuring the factors that are common to the
items (Bollen, 1989). In addition, it has been argued there will often be difficulties in estimating
the specific factors and distinguishing them from the components of e even in a longitudinal
design depending on the temporal stability of the specific factors and the retest intervals chosen
(McDonald, 1985, 1999). According to this position, we should rewrite (1) asx = cg + Af + u,
where s and e combine to form u — the “unique” component of x, u = Ds + e, and when ¢ is
related to the factors in a hierarchical factor model, we obtain

t=cg+Af. @)
Given the definition of true score expressed in (7), reliability is given by

ec'1+1'AA’1
0= ——": ®)
Var(X)
It is readily apparent from (6) and (8) that @ < p with equality holding if and only if there are no
item specific factors as noted by McDonald (1970).

The square root of p provides an upper bound to the extent to which the scale can correlate
with another measure. Perhaps the most compelling motivation for o was provided by McDonald
(1978) who showed that if the scale’s indicators are representative of the domain from which
they are sampled then ® equals the squared multiple correlation between the scale score and

4For detailed discussions of this point see Blalock (1970), Heise (1969) and Wiley and Wiley (1970).
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the domain score (defined as the sum of all the indicators in the infinite domain remaining after
selecting the scale’s indicators). Rather than choose between these two alternative conceptualiza-
tions of reliability, we will include both p as expressed in (6) and ® as expressed in (8) in our
comparisons to allow adherents of either position to see how a, B, and wy, relate to their preferred
conceptualization of reliability.

5. Relations Among a, B, @, and Reliability
Given (2) and (6),

1’AA’1 +1'DD’1
p—wp =
Var(X)

, €))

and, given (2) and (8), ® — oy = 1”AA’1/Var(X). That is, regardless of which of the two alterna-
tive conceptualizations of reliability that one adopts — p or o, reliability will always be greater
than ®;, when group factors are present. Further, the differences between w; and reliability can
be substantial when group factors are present. In fact, as has been demonstrated many times
(e.g., Cronbach, 1951; Green, Lissitz, & Mulaik, 1977; Revelle, 1979), reliability can be high
even in the special case of a scale that does not tap a general factor in which (6) reduces to
p=1"AA'1+1'DD’1)/Var(X) and (8) reduces to ® = 1"A A’1/Var(X). In contrast, ®;, equals
zero by definition in such cases.

The relations among o and B with ®;, and with the two reliability indices discussed above
are complex and vary depending on both (a) whether the scale in question is multidimensional
or unidimensional and (b) whether the loadings on the general factor are all equal.’ Thus, below
we discuss the relations among these indices under each of the four conditions produced by the
crossing of dimensionality (multidimensional vs. unidimensional) and equality of general factor
loadings (all are equal vs. not all are equal). The relations of o, B, @, and reliability across these
four conditions are summarized in Table 1.

5.1. Case I: Multidimensional, Unequal General Factor Loadings

In what is likely to be the most general case of a multidimensional scale with unequal general
factor loadings, and expressing alpha in terms of (4) and the parameters of the hierarchical factor
model given by (1) leads to

k Vel —cc+1TAA'1 —Tr(AA)
o= . (10)
k—1 Var(X)
Given (6) and (10),
1'DD’1 N k2 P 4 | N Tr(A’A) T AA'l an
e = ce _ ,
p Var(X) | (k — hvarx) |\ k 12 k K2
and, given (8) and (10),
k> de 1l Tr(A’A) T1'AA’1
w—o=— |- — + — ) (12)
(k — DVar(X) |\ & k2 k k2

Thus, o is less than reliability when group factors are present and there is variance in the general
factor loadings regardless of which of the two alternative conceptualizations of reliability that one

50ne anonymous reviewer found our use of the term unidimensional to be unclear. To avoid confusion on this
important point, by unidimensional we mean that the scale has only 1 common factor.
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TABLE 1.

Summary of relations among 0, [3 )y, and reliability as a function of scale dimensionality and equality of general factor
loadings

Unequal general factor loadings Equal general factor loadings
Multidimensional Case I Case II
B<a<w=<p Casellf=w, <a<w=<p

Wy <W=p

Unidimensional Case III Case IV
(Essential tau equivalence)
B<a<wy=w=p a=f=w,=w0=<p

Note: The relations between O and (0, and between B and ;, depend on the specifics of the factor pattern for Case I
structures. Though the Case IV result that & < P might appear to contradict the proof originally published by Novick
and Lewis (1967) that O is a lower bound of reliability with equality holding under conditions of essential tau
equivalence, it must be remembered that our P reflects a different definition of true score than that used by Novick and
Lewis. The Case IV result that & = ® does accord with the Novick and Lewis proof.

adopts. Note that since it is always true that B < a, it follows that 3 is also less than reliability in
this case also. Furthermore, (11) and (12) show that the extent to which a is less than reliability
is a positive function of (a) the variability in the general factor loadings and (b) the variability in
the group factor loadings. Equation (11) also shows that if one defines true scores as including
specific factors as in (5) then the proportion of variance in scale scores due to item specific factors
is a third factor that determines the extent to which a is less than reliability.

Given (2) and (10),

B k2 {(c'_c (l’c)2> (Tr(AA’) 1’AA’1)} {I’AA’I} 13)
wh_a_(k—l)Var(X) e )T 'z | varo) |

Though the relation between o and ®, is complex in this case, (13) shows that o can be greater
than, equal to or less than w; when group factors are present and there is variance in the general
factor loadings depending on the group factor saturation (i.e., the proportion of variance in scale
scores due to group factors), the variance in the general factor loadings, and the variance in the
group factor loadings. More specifically, (13) reveals that increasing group factor saturation will
tend to elevate o relative to w; whereas increases in the variance of either the general factor
loadings and/or the group factor loadings will tend to depress the value of o relative to ®;. oy
will be greater than o only when

k? e (Uc)? Tr(AA") T1'AA’1
(k—l)KT_ 2 )+< PR )}“'AA'I’

that is only when k%/(k — 1) times the sum of the variance in the general factor loadings plus
the sum of the variance in the loadings on each of the group factors exceeds the group factor
saturation. Whereas the variance in the group factor loadings tends to increase for a fixed value
of k as the amount of variance in scale scores due to group factor increases, these two parameters
can vary at least somewhat independently from each other and from the variance in general factor
loadings. Thus, for example, when a scale has a factor pattern with a lot of variability in the
general factor loadings and relatively weak group factors, alpha can be less than »j,. For example,
consider scale A that consists of six items with the first three items loading 0.2 on a general factor
and the last three items loading 0.9 on the general factor. In addition, the first three items load 0.2
on one group factor and the last three items load 0.2 on a second group factor. If all of the items
have unit variance then @, = 0.73 whereas oo = 0.71 (and B = 0.44).
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On the other hand, when there is little variability in the general factor loadings and relatively
strong group factors, alpha will tend to be greater than . In fact, alpha can be considerably
greater than o, in such cases. Consider another example of a six-item scale — scale B. For scale
B, the first three items load 0.4 on a general factor whereas the last three items load 0.5 on the
general factor. In addition, the first three items load 0.6 on one group factor and the last three
items load 0.6 on a second group factor. If all of the items have unit variance then ®;, = 0.45
whereas oo = 0.76 (and B = 0.44).

The relation between 3 and my, is also complex in this case. Unfortunately, it is not amenable
to formal analysis as there is no general rule for producing the worst split half that holds across
the different factor patterns that are possible when group factors are present and the general fac-
tor loadings are not all equal. Thus,  can be greater than, equal to or less than @ in this case
depending on the specifics of the factor pattern. For example, consider cases in which there is
variance in the general factor loadings but the group factors are all loaded on by the same number
of items without any variance in the size of the non-zero loadings on the group factors. Further
imagine that the variance in general factor loadings is also perfectly confounded with group factor
membership. That is, all the items with the weakest loadings on the general factor load on the
same group factor whereas all the items with the next weakest loadings on the general factor load
on a second group factor and so on. In such cases, the items with the weakest loadings on the
general factor will be assigned to the same half when the worst split is created causing the average
covariance between items in different halves for the worst split to underestimate the strength
of the common construct in the remaining items. Both scales A and B discussed above provide
examples of such structures in which B is smaller than m;, with the difference between B and oy
being quite large in the case of scale A(0.44 vs. 0.73).

It is also possible to imagine structures, again involving heterogeneity in general factor load-
ings, in which beta will be greater than wy. For example, consider a final example of a six-item
scale — scale C. For scale C, the loadings on the general factor are 0.9, 0.8,0.5,0.5,0.5and 0.1. In
addition, the first two items each load 0.2 on one group factor whereas the last four items all load
0.8 on a second group factor. In this case, the worst split will be produced by splitting off Item 6
from the first five items. If all the items have unit variance then o, = 0.53 whereas 8 = 0.62 for
the scale score obtained by summing all six items (and o = 0.85). Though the differences among
o, B, and ®j, are not large in some of our examples, given that the examples do not incorporate
sampling error, any difference illustrates that neither o nor B are the same parameter as ®; under
these conditions.

5.2. Case II: Multidimensional, Equal General Factor Loadings

For multidimensional scales with equal general factor loadings, (10) reduces to o
=[k/(k — D][(Mec'1 + 1"AA’1 — Tr(AA’))/Var(X)]. Thus, (11) reduces to

1'DD’1 N k2 Tr(AA’) T AA'l 14
— 0 = p— s
p Var(X) | (k— Dvar(X) | & i
and (12) reduces to
k2 Tr(AA’) T AA’l
w—a= - (15)
(k — 1)Var(X) k k2

(14) and (15) reveal that the extent to which a is less than reliability in this case increases as
variability in the group factor loadings increases. Equation (14) also shows in this case that if one
defines true scores as including specific factors, then the proportion of variance in scale scores
due to item specific factor, also influences the extent to which o is less than reliability.
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Similarly, (13) reduces to

op —o = (k_l;(T(X)(Tr(AA’) —1T'AA'D). (16)

Equation (16) reveals that o will always be greater than wy, in this case as Tr(AA”) —1"AA’1 < 0.

B can be easily shown to be algebraically equivalent to @, when the general factor loadings

are all equal. First, consider the relation between the covariance between any two items and their

factor pattern loadings. When group factors are present and the general factor loadings are all

equal Ag; = Agj = -+ = Agk = ):g), the covariance of any two items, i and j, loading on
different group factors equals

=2
0jj = Xg (17)
whereas the covariance of any two items, / and m, loading on the same group factor, f;, equals
T2
Oim =Xy +Apikfm (18)

From (17) and (18) it is obvious that 6;; < Gy,,. Thus, when group factors are present and all of
the item loadings on the general factor are equal, the worst split half will result when all items
that load on the same group factor are put into the same half. Therefore, each covariance between

items in different halves for the worst split half will be given by (17) and 8 = k2 7_»2, /Var(X) which
is algebraically equivalent to @y,.

5.3. Case III: Single Factor, Unequal Loadings

For a unidimensional scale with unequal factor loadings, (6) reduces to

1ec’'1+1"DD’'1

= 19
o Var(X) (19)
(8) reduces to
1ec’1 o 20)
W = = .
Var(X) h
(9) reduces to
1'DD'1 @1
— Wy, = —m
PO = Nar(X)
(10) reduces to
k T'ec’l - ¢
= , 22
* k—l( Var(X) ) (22)
(11) reduces to
1'DD’1 N k2 e (1c)? 23
— 0 = —_— s
p Var(X) | (k—DVar(X) | k K2
(12) reduces to
k2 e (1e¢)?
—t=—§ — — , 24)
(k — )Var(X) | k k2
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and (13) reduces to

2 ’ 102
k cc_(lc)}. (25)

Ch T T DVar(x) {7 2

That is, (20) shows that if one excludes specific factors from one’s definition of true scores as in
(7) then wy, gives the reliability for a unidimensional scale with unequal factor loadings. Equation
(21) shows that @y, is less than or equal to reliability if one includes item specific factors in one’s
definition of true score as in (5) with equality holding if and only if there are no item specific
factors. On the other hand, (23) and (24) reveal that o is less than reliability for a unidimensional
scale with unequal factor loadings regardless of whether one includes item specific factors in
one’s definition of true score or not. Equations (23) and (24) also show that the extent to which
a is less than reliability increases as the variability in the factor loadings increases. Finally, (25)
shows that @, > o in the case of a unidimensional scale with unequal factor loadings and that
the extent to which a is less than o, increases as the variability in the factor loadings increases.®

B < o in the case of a unidimensional scale with unequal loadings. In this case, the worst
split will result when the item (or items) that has the smallest loading is put into one half and
the remaining items are put in the other. Thus, the average covariance between items in different
halves for the worst split will simply be the average of the covariances between the worst item(s)
and all the remaining items and will be lower than the average covariance among all the items.
Obviously, B < o, under these conditions as well.

5.4. Case IV: Single Factor, Equal Loadings (Essential Tau Equivalence)

In the most restrictive case of an essentially tau equivalent scale, that is a unidimensional
scale with equal factor loadings, (6) reduces to (19), (8) reduces to (20) and (9) reduces to (21) as
in Case III (single factor, unequal loadings). In addition, (10) reduces toa = 1’¢c’1/Var(X) = wy,
as originally proved by McDonald (1970, 1999) for the case of a unidimensional scale with equal
factor loadings. It is also easy to show that B = @, in this case as well. When all of the item
loadings on the single, general factor are equal (Ag; = Agj = - -+ = Agx = Ag), the covariance of
any two items, i and j,

0ij =g kg, =X, (26)

Note that regardless of how the items are split, including for the worst split, each covariance

between items in different halves will be given by (26). That is, 8 = kz):;/Var(X ) which is
equivalent to @y as noted above.

6. Limitations

The primary limitations of the approach taken in this article is that all of its developments
are at the population level. There are several methods for estimating general factor loadings based
on sample data and questions such as which of these methods produce the least biased statistical
estimates of @y, or the extent to which estimates of oy, are affected by model misspecification such
as over-factoring and under-factoring. These are important ones that we are currently working
on. Relatedly, as we limited ourselves to considerations at the population level, we do not include
any consideration of the important topic of using sample statistics to derive interval estimates for

6McDonald (1999, p. 93) published a proof that also concluded that alpha will be less than @y, in the single factor,
unequal loadings case and that the difference between alpha and () under these conditions is directly related to the
variance in the factor loadings. Unfortunately, there was a minor typographical error in that proof.
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the population value of ®;, or . Though further discussion of this topic is beyond the scope of
this article, we would be remiss if we did not at least state that when estimating wj, or ®, good
statistical practice would dictate that point estimation should be supplemented by interval estima-
tion. Bootstrapping and analytic techniques for interval estimation of @ have been described by
Raykov (1998a,b, 2002) and Raykov and Shrout (2002) and we suspect these methods should also
be useful for obtaining a standard error and confidence interval when estimating ®. Certainly,
interval estimation of @y, is a topic that should be studied in detail in future investigations.

7. Conclusions

Equation (10) and its reduced forms in Cases I, II and III show that o is multiply determined
under all but the most highly restrictive of conditions — it often reflects not only general factor
saturation but also group factor saturation and even variability in factor loadings. Given such
complexity, one could question whether the meaning of o is terribly clear in many conditions.
Certainly, the nonequivalence of a, B, @, ® and p demonstrated here suggests that information
about an important psychometric property of a scale — the proportion of variance in scale scores
associated with a general factor — may be missing when scale developers and users only report o
as is almost always the case. Though o will always be at least as large as wy, and o will often be
at least as large as my,, choosing among these indices should be based on one’s research question
and considerations of dimensionality and equality of general factor loadings rather than which
index is largest. When interested in the proportion of scale variance due to all common factors, ®
is clearly the index of choice and there are conditions (i.e., Case II structures) in which o will be
superior to ®y. In contrast, when interested in the proportion of scale variance due to a general
factor, wy, is clearly the index of choice and is always at least as appropriate as o with equality
holding under only the most highly restrictive conditions (i.e., Case IV structures/essential tau
equivalence).
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