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1 Objectives

There are many possible statistical programs that can be used in psychological research.
They differ in multiple ways, at least some of which are ease of use, generality, and cost.
Some of the more common programs used are SAS, SPSS, and Systat. These programs
have GUIs (Graphical User Interfaces) that are relatively easy to use but that are unique
to each package. These programs are also very expensive and limited in what they can do.
Although convenient to use, GUI based operations are difficult to discuss in written form.
When teaching statistics or communicating results, it is helpful to use examples that others
may use, perhaps in other computing environments. This course describes an alternative
approach that is widely used by practicing statisticians, the statistical environment R.

R is used in various courses here at NU and has been adopted as the primary stats program
for teaching at the University of Virginia and the University of Colorado (among others).
I use it in teaching Psych 205, 371, 405, and 454.

The objective of this short course is very simple: to have you learn enough about R to start
using it to facilitate your teaching and research. You will not, however be fluent in R. But,
by the end of the course you should be wondering why you ever used SPSS or SAS. For
“this is R. There is no if. Only how.” (R fortune).

2 Requirements and readings

A willingness to learn and to ask questions. Bringing a personal computer to class would
not be a bad idea.

Handouts of the lecture notes will be linked from this outline. Most of the handouts will
be either pdfs of slides or pdfs of example code.

There are a number of tutorials on learning R, ranging from the short to the extensive. The
definitive short text is An Introduction to R by Venables et al. (2008). This may either be
purchased (proceeds go to the R Foundation) or downloaded. For those who are familiar
with SPSS or SAS, the book, R for SAS and SPSS Users by Muenchen (2009), is a good
introduction. (See his webpage at http://rforsasandspssusers.com/). For psychologists, my
tutorial Using R for psychological research:A simple guide to an elegant package is not a
bad beginning. See also the short and very short versions of that for undergraduates. As
an example of what a bright undergraduate can do to help other undergraduates use R,
see K. Funkhouser’s Using R to analyze a simple data set.

There are a number of other very good tutorials on the web. An essential aid is the R
reference card and the search engines R seek: a search engine for R and Jonathan Baron’s
search engine of the R help archives.
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3 Day 1: What is R? An introduction

3.1 What is it?

The R Development Core Team (2008) has developed an extremely powerful “language
and environment for statistical computing and graphics” and a set of packages that operate
within this programming environment (R). The R program is an open source version of the
statistical program S and is very similar to the statistical program based upon S, S-PLUS
(also known as S+). Although described as merely “an effective data handling and storage
facility [with] a suite of operators for calculations on arrays, in particular, matrices” R
is, in fact, a very useful interactive package for data analysis. When compared to most
other stats packages used by psychologists, R has at least three compelling advantages:
it is free, it runs on multiple platforms (e.g., Windows, Unix, Linux, and Mac OS X
and Classic), and combines many of the most useful statistical programs into one quasi
integrated environment. R is free1, open source software as part of the GNU2 Project. That
is, users are free to use, modify, and distribute the program, within the limits of the GNU
non-license). The program itself and detailed installation instructions for Linux, Unix,
Windows, and Macs are available through CRAN (Comprehensive R Archive Network) at
http://www.r-project.org

The R Development Core Team (2008) releases an updated version of R about every six
months. That is, as of March, 2009, the current version of 2.8.1 will be replaced with 2.9.0
sometime in April. Bug fixes are then added with a sub version number (e.g. 2.8.1 fixed
minor problems with 2.8.0). It is recommended to use the most up to date version, as it
will incorporate various improvements and operating efficiencies. Although many run R as
a language and text oriented programming environment, there are GUIs available for PCs,
Linux and Macs. See for example, R Commander by John Fox or R-app for the Macintosh
developed by Stefano Iacus and Simon Urbanek. Compared to the basic PC environment,
the Mac GUI is to be preferred.

R is an integrated, interactive environment for data manipulation and analysis that includes
functions for standard descriptive statistics (means, variances, ranges) and also includes
useful graphical tools for Exploratory Data Analysis. In terms of inferential statistics R
has many varieties of the General Linear Model including the conventional special cases
of Analysis of Variance, MANOVA, and linear regression. Statisticians and statistically
minded people around the world have contributed packages to the R Group and maintain
a very active news group offering suggestions and help. The growing collection of pack-
ages and the ease with which they interact with each other and the core R is perhaps the
greatest advantage of R. Advanced features include correlational packages for multivariate

1Free as in speech rather than as in beer. See http://www.gnu.org
2GNU’s Not Unix
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analyses including Factor and Principal Components Analysis, and cluster analysis. Ad-
vanced multivariate analyses packages that have been contributed to the R-project include
one for Structural Equation Modeling (sem, Hierarchical Linear Modeling (referred to as
non linear mixed effects in the nlme4 package) and taxometric analysis. All of these are
available in the (>1400) free packages distributed by the R group at CRAN. Many of the
functions described in this book are incorporated into the psych package. Other packages
useful for psychometrics are described in a task-view at CRAN. In addition to being a
environment of prepackaged routines, R is a interpreted programming language that allows
one to create specific functions when needed.

R is also an amazing program for producing statistical graphics. A collection of some of the
best graphics is available at the webpage addictedtoR with a complete gallery of thumbnail
of figures.

3.2 How to get it: CRAN (Comprehensive R Archive Network)

Although it is possible that your local computer lab already has R, it is most useful to do
analyses on your own machine. In this case you will need to download the R program from
the R project and install it yourself. Go to the R home page at http://www.r-project.org
and then choose the Download from CRAN (Comprehensive R Archive Network) option.
This will take you to list of mirror sites around the world. You may download the Windows,
Linux, or Mac versions at this site. For most users, downloading the binary image is easiest
and does not require compiling the program.

3.3 Packages and Task Views

One of the advantages of R is that it can be supplemented with additional programs that
are included as packages using the package manager. (e.g., sem does structural equa-
tion modeling) or that can be added using the source command. Most packages are
directly available through the CRAN repository. Others are available at the BioConductor
http://www.bioconductor.org repository. Yet others are available at “other” reposito-
ries. The psych package Revelle (2009) may be downloaded from CRAN or from the http:
//personality-project.org/r repository. The concept of a “task view” has made down-
loading relevant packages very easy. For instance, the install.views("psychometrics")
command will download over 20 packages that do various types of psychometrics.

For any other than the default packages to work, you must activate it by either using the
Package Manager or the library command:

• e.g., library(psych) or library(sem)
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• entering ?psych will give a list of the functions available in the psych package as well
as an overview of their funtionality.

• objects(package:psych) will list the functions available in a package (in this case,
psych).

3.4 Help and Guidance

R is case sensitive and does not give overly useful diagnostic messages. If you get an error
message, don’t be flustered but rather be patient and try the command again using the
correct spelling for the command.

When in doubt, use the help(somefunction) function. This is identical to ? somefunction
where some function is what you want to know about. e.g.,
?read.table #ask for help in using the read.table function – see the answer in the help
window, or
help(read.table) #another way of asking for help. - see the help window

RSiteSearch(“keyword”) will open a browser window and return a search for “keyword” in
all functions available in Rand the associated packages as well (if desired) the R-Help News
groups.

3.5 Package vignettes

All packages have help pages for each function in the package. These are meant to help you
use a function that you already know about, but not to introduce you to new functions. An
increasing number of packages have a package “vignettes” that give more of an overview of
the program than a detailed description of any one function. These vignettes are accessible
from the help window and sometimes as part of the help index for the program. The two
vignettes for the psych package are also available from the personality project web page.
(An overview of the psych package and Using the psych package as a front end to the sem
package).

3.6 Basic R commands and syntax

There are more than 10,000 possible one line commands that one can enter when using
R 3 and no one can be expected to know them all. Even those of us who write packages
need help remembering the possible commands and syntax of our own packages. In fact,

3This is based on the observation that there are > 1500 packages and that each package probably has
at least 6 functions.
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the Rpad handout is just one of many ways of remembering the appropriate command for
core R. Even so, the basic concept of all commands is fairly easy to grasp in terms of the
following simple analogy: R is just a fancy calculator that draws graphics and has built in
statistic tables.

3.6.1 R is just a fancy calculator

One can think of R as a fancy graphics calculator. Enter a command and look at the
output. Thus,

> 2 + 2

[1] 4

> 3^4

[1] 81

> pi

[1] 3.141593

In the above example, the > symbol is the R prompt and the next line [1] is the answer.
When copying a line like this, do not include the > symbol. The # symbol is used to add
comments to lines (and will not show when running R to prepare documents!). It is helpful
to use a text editor (perhaps the one available in R, perhaps another one) to write the
commands out before copying them into R. The up arrow command will echo the previous
command on the terminal and allow for editing.

At the abstract level, almost all operations in R consists of executing a function on an
object. The result is a new object. This very simple idea allows the output of any operation
to be operated on by another function.

Command syntax tends to be of the form:
variable = function (parameters) or
variable <- function (parameters)
The = and the <- symbol imply replacement, not equality. The preferred style is to use
the <- symbol to avoid confusion with the test for equality (==).

The result of an operation will not necessarily appear unless you ask for it. The command
x <- c(1, 3, 5, 7)
m <- mean(x)
will create the vector x made up of the numbers 1, 3, 5, 7, and set m equal to the mean of
x but will not print anything on the console without the additional request
m.
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however, just asking mean(x)
will find the mean and print it.

> x <- c(1, 3, 5, 7)

> m <- mean(x)

> m

[1] 4

> mean(x)

[1] 4

> sd(x)

[1] 2.581989

In addition to simple arithmetic, R allows you to create vectors or matrices and do oper-
ations on these matrices. The first example forms the vector V made up of the numbers
from 1 to 10. The second finds the 3 x 5 matrix, m, made up of randomly chosen numbers
sampled (with replacement) from the numbers 0-9. In this later example, to make the
example replicable for the reader, the random number seed is set to a well known but arbi-
trary value (Adams, 1980). Using the fancy desk calculator ability of R, the last operation
is a matrix operation that finds the sum of the cross products of M. That is, the sum of the
squares of the columns of M (the diagonals) and the sum of the products of each column
with each other column.

> set.seed(42)

> V <- seq(1:5)

> M <- matrix(sample(5, 15, replace = TRUE), ncol = 3, nrow = 5)

> V

[1] 1 2 3 4 5

> M

[,1] [,2] [,3]
[1,] 5 3 3
[2,] 5 4 4
[3,] 2 1 5
[4,] 5 4 2
[5,] 4 4 3

> V * M
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[,1] [,2] [,3]
[1,] 5 3 3
[2,] 10 8 8
[3,] 6 3 15
[4,] 20 16 8
[5,] 20 20 15

> t(M) %*% M

[,1] [,2] [,3]
[1,] 95 73 67
[2,] 73 58 50
[3,] 67 50 63

3.6.2 R as a graphing calculator

Suppose we want to present a graph comparing two normal distributions with different
means and sigmas:

3.6.3 R is also a statistics table

It has been suggested by some that you should never buy a statistics book that has proba-
bility tables in it, because that means that the author did not know about modern statistics
and the various distributions in R. Many statistics books include tables of the t or F or
χ2 distribution. By using R this is unnecessary since these and many more distributions
can be obtained directly. Consider the normal distribution as an example. dnorm(x,
mean=mu, sd=sigma) will give the probability density of observing that x in a distribu-
tion with mean=mu and standard deviation= sigma. pnorm(q,mean=0,sd=1) will give
the probability of observing the value q or less. qnorm(p, mean=0, sd=1) will give the
quantile value of a value with probability p. rnorm(n,mean,sd) will generate n random
observations sampled from the normal distribution with specified mean and standard de-
viation. Thus, to find out what z value has a .05 probability we ask for qnorm(.05). Or,
to evaluate the probability of observing a z value of 2.5, specify pnorm(2.5). (These last
two examples are one side p values).

Applying these prefixes (d,p,q, r) to the various distributions available in R allows us to
evaluate or simulate many different distributions (Table 1).

Consider the following examples.

> pt(2, 6)
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> curve(dnorm(x, 1, 0.5), -3, 3, ylab = "Probability of x", main = "Comparing two distributions")

> curve(dnorm(x, 0, 1), add = TRUE)
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Figure 1: Two normal distributions drawn using the curve function.
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Figure 2: The normal curve with various colorings is a nice example of a simple but useful
graphic.
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[1] 0.9537868

> pnorm(2)

[1] 0.9772499

> dnorm(-1)

[1] 0.2419707

> pf(3.5, 1, 20)

[1] 0.923926

> qf(0.95, 1, 60)

[1] 4.001191

> qchisq(0.95, 1)

[1] 3.841459

3.6.4 R will make up data

Although making up data is normally considered a bad thing for a researcher to do, when
we call it“simulation” it is considered scientific. All of the distributions listed in Table 1 can
be prefaced with “r” to create (pseudo) random data with that particular shape. Consider
the following example where the data are generated and then their histogram is drawn
(Figure 3).

This ability to simulate data is particularly useful when teaching statistics, or when trying
out a new method. For if you know what the underlying model is, it is easier to understand
what how well the method works. When teaching about distributions, it is useful to show
what happens if we take progressively larger samples of the data. This is shown in Figure 4
where we plot the means of samples of size 1, 2, 4, and 8. This uses the replicate and
rowMeans functions. The last two panels show how to combine multiple commands into
one line.

4 Entering or getting the data

For most data analysis, rather than manually enter the data into R, it is probably more
convenient to use a spreadsheet (e.g., Excel or OpenOffice) as a data editor, save as a tab
or comma delimited file, and then read the data from the file. Many of the examples in
this tutorial assume that the data have been entered this way. Many of the examples in
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Table 1: Some of the most useful distributions for psychometrics that are available as
functions. To obtain the density, prefix with d, probability with p, quantiles with q and
to generate random values with r. (e.g., the normal distribution may be chosen by using
dnorm, pnorm, qnorm, or rnorm.) Each function has specific parameters, some of which
take default values, some of which require being specified. Use help for each function for
details.

Distribution base name P 1 P 2 P 3 example application
Normal norm mean sigma Most data

Multivariate normal mvnorm mean r sigma Most data
Log Normal lnorm log mean log sigma income or reaction time

Uniform unif min max rectangular distributions
Binomial binom size prob Bernuilli trials (e.g. coin flips)

Student’s t t df nc Finding significance of a t-test
Multivariate t mvt df corr nc Multivariate applications

Fisher’s F f df1 df2 nc Testing for significance of F test
χ2 chisq df nc Testing for significance of χ2

Beta beta shape1 shape2 nc distribution theory
Cauchy cauchy location scale Infinite variance distribution

Exponential exp rate Exponential decay
Gamma gamma shape rate scale distribution theoryh

Hypergeometric hyper m n k
Logistic logis location scale Item Response Theory
Poisson pois lambda Count data
Weibull weibull shape scale Reaction time distributions
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> op <- par(mfrow = c(2, 2))

> n <- 1000

> x <- rnorm(n)

> hist(x, main = "Normal")

> x <- runif(n)

> hist(x, main = "Rectangular")

> x <- rpois(n, 3)

> hist(x, main = "Poisson")

> x <- rlnorm(n)

> hist(x, main = "Log Normal")

> op <- par(mfrow = c(1, 1))
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Figure 3: Histograms of four different random distributions, the normal (rnorm), the rect-
angular or uniform (runif), the Poisson (rpois), and the lognormal (rlnorm). The first op
command specifies that we want a 2 x 2 plot, the second one returns us to the normal 1 x
1 plot.
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> op <- par(mfrow = c(2, 2))

> n <- 1000

> x <- runif(n)

> hist(x, main = "1 case")

> x <- rowMeans(replicate(2, runif(n)))

> hist(x, main = "2 cases", xlim = c(0, 1))

> hist(rowMeans(replicate(4, runif(n))), main = "4 cases", xlim = c(0, 1))

> hist(rowMeans(replicate(8, runif(n))), main = "8 cases", xlim = c(0, 1), xlab = "Mean of x")

> op <- par(mfrow = c(1, 1))
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Figure 4: Histograms of the means of four different sample sizes where the samples are
taken from a uniform distribution. This makes use of the replicate and rowSums functions,
as well as the runif and hist functions.
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the help menus have small data sets entered using the c() command or created on the fly.
It is also possible to read data in from a remote file server. Alternatively, if you have data
in a SAS or SPSS file, there are functions in the foreign package to import them.

Using the copy.clipboard() function from the psych package, it is also possible to have
a data file open in a text editor or spreadsheet program, copy the relevant lines to the
clipboard, and then read the clipboard directly into R.

Finally, many packages include example data sets that can be accessed directly using the
data command. Thus, to get a number of factor analysis examples with a bifactor structure,
the bifactor data set is called to make the seven data sets within it available.

4.1 Getting data from a remote file server

For the first example, we read data from a file server in the Personality-Motivation-
Cognition lab at Northwestern University that contains the responses for several hundred
subjects on 13 personality scales (5 from the Eysenck Personality Inventory (EPI), 5 from
a Big Five Inventory (BFI) , one Beck Depression, and two anxiety scales). The data are
taken from a study in the Personality, Motivation, and Cognition Laboratory. The file is
structured normally, i.e. rows represent different subjects, columns different variables, and
the first row gives subject labels. Had we saved this file as comma delimited, we would
add the separation (sep=”,”) parameter.

#specify the name and address of the remote file

> datafilename <- "http://personality-project.org/r/datasets/maps.mixx.epi.bfi.data"

#now read the data file

> my.data <- read.table(datafilename,header=TRUE) #read the data file

4.2 Getting data from a local file

More typically, the data are stored somewhere on your computer in a tab delimited or
comma delimited file. The process is equally easy, in that you first locate the file and then
read it.

> datafilename <- file.choose() #where you dynamically can go to find the file

> my.data <- read.table(datafilename,header=TRUE) #read the data file

4.3 Copying the data from the clipboard

Yet another alternative is to directly access the data file outside of R, copy the data to the
clipboard, and then read the clipboard using the read.clipboard function.
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> my.data <- read.clipboard() # if there are complete cases and each column has an identifier

> my.data <- read.clipboard(header=FALSE) # if there are complete cases and columns do not have identifiers

> my.data <- read.clipboard(sep="t") #if the data come from a spreadsheet with blank cells to represent missing data

> my.data <- read.clipboard.csv() #if the data were copied from a comma delimited file

4.4 Reading from an SPSS file

To read from an SPSS or SAS data file, it is necessary to first load the foreign.

> library(foreign)

> my.spss.file.name <- file.choose() #where you dynamically can go to find the file

> my.data <- read.spss(my.spss.file.name,to.data.frame=TRUE)

4.5 Getting the data from a built in data set

Because we want to demonstrate the same data set many times and the user is not nec-
essarily connected to the internet, many packages have built in data sets. A list of all
available sets can be found by the data() command. The data sets within a package are
found by specifying the package. For the next examples, we use the epi.bfi data set.

> data(package = "psych")

> data(epi.bfi)

> my.data <- epi.bfi

The data are now in the data.frame “my.data”. Data.frames allow one to have columns
that are either numeric or alphanumeric. They are conceptually a generalization of a matrix
in that they have rows and columns, but unlike a matrix, some columns can be of different
“types” (integers, reals, characters, strings) than other columns. But how do you know they
are there? R is a somewhat reticent program and will not give some affirmative message
that it has worked, but just do it. The functions dim and names can be used to find out
how many variables and cases were read, and what their names are.

> dim(my.data)

[1] 231 13

> names(my.data)

[1] "epiE" "epiS" "epiImp" "epilie" "epiNeur" "bfagree" "bfcon" "bfext" "bfneur" "bfopen" "bdi"
[12] "traitanx" "stateanx"
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4.6 Entering data manually–understanding data structures

Everything in R is an object. Some of these objects are functions, some are the results of
functions. Thinking very abstractly, the process of analysis is to apply some function to
some object and return a new object. Knowing the structures of these objects allows a
better understanding of how to use them. In particular, if it is necessary to enter data
manually, it is useful to know the various types of data structures .

4.6.1 Data structures

elements : These are single values which may be integers, reals, logicals, factors, or charac-
ter (strings). They are actually thought of as vectors of length one and have no
dimensions.

vectors These are the basic object in R and are ordered sets of values. They have length and
are of dimension one. They may be formed by the concatenation function c. E.g., x
<- c(1,4, 6), y <- c(”apples”,”oranges”), z <- c(TRUE, FALSE, TRUE). Elements of
a vector may be addressed by location (x[2] has the value of 4).

matrices Matrices are just vectors of vectors. That is to say, they are two dimensional arrays
where the elements are all of the same type. Elements may be addressed by location
(X[i,j] is the element in the ith row and the jth column of X). More useful, X[i,] is
the entire ith column, X[,j] is the entire jth row.

data.frames A data.frame appears to be the same as a matrix, but may have columns of different
types. Each column must be of the same length. Elements may be addressed by
location (X.df[i,j])

lists The most general way of aggregating objects. Lists have members of the list, each
member may itself be a list, matrix, vector or element.

Below are examples of creating vectors (x, y, z), matrices (X, Y), a data.frame (y.z.df),
and then finally, a list (L) made up of all of the prior objects.

> x <- c(1, 2, 4)

> y <- c(letters[1:6], LETTERS[1:4])

> z <- seq(10, 28, 2)

> X <- matrix(1:20, ncol = 4)

> Y <- matrix(c(11, 22, 44, 4, 15, 42), ncol = 3, byrow = TRUE)

> yz.df <- data.frame(A = y, b = z)

> L <- list(a = x, b = y, c = z, d = X, e = Y, f = yz.df)

> x

[1] 1 2 4
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> y

[1] "a" "b" "c" "d" "e" "f" "A" "B" "C" "D"

> z

[1] 10 12 14 16 18 20 22 24 26 28

> X

[,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20

> Y

[,1] [,2] [,3]
[1,] 11 22 44
[2,] 4 15 42

> yz.df

A b
1 a 10
2 b 12
3 c 14
4 d 16
5 e 18
6 f 20
7 A 22
8 B 24
9 C 26
10 D 28

> L

$a
[1] 1 2 4

$b
[1] "a" "b" "c" "d" "e" "f" "A" "B" "C" "D"

$c
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[1] 10 12 14 16 18 20 22 24 26 28

$d
[,1] [,2] [,3] [,4]

[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20

$e
[,1] [,2] [,3]

[1,] 11 22 44
[2,] 4 15 42

$f
A b

1 a 10
2 b 12
3 c 14
4 d 16
5 e 18
6 f 20
7 A 22
8 B 24
9 C 26
10 D 28

Thinking analogically, the data.frame is the most similar to the standard spreadsheet way
of organizing data, and most statistical analysis will make use of data.frames or of matrices.
The list structure is a particularly appealing way of storing the results of any particular
analysis, for it can hold different types of information as one, high level, object.

If you do know, or can remember the structure of a particular object, then the str function
will retrieve it for you. This is particularly useful when running a complex statistical
analysis, for only some results will be shown, even though far more information is hidden
in the object.

> str(L)

List of 6
$ a: num [1:3] 1 2 4
$ b: chr [1:10] "a" "b" "c" "d" ...
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$ c: num [1:10] 10 12 14 16 18 20 22 24 26 28
$ d: int [1:5, 1:4] 1 2 3 4 5 6 7 8 9 10 ...
$ e: num [1:2, 1:3] 11 4 22 15 44 42
$ f:'data.frame': 10 obs. of 2 variables:
..$ A: Factor w/ 10 levels "a","A","b","B",..: 1 3 5 7 9 10 2 4 6 8
..$ b: num [1:10] 10 12 14 16 18 20 22 24 26 28

4.6.2 Entering data into a data.frame

A data.frame is just a collection of objects, each of the same length where subjects are
rows and variables are columns. Thus, an experiment might have one or more condition
variables, and one or more outcome variables. Consider a simple example of two conditions
(control vs. experimental) and a measured variable.

> condition = c("e", "e", "e", "c", "c", "c")

> result <- c(2, 3, 4, 1, 2, 3)

> my.data <- data.frame(condition, result)

> my.data

condition result
1 e 2
2 e 3
3 e 4
4 c 1
5 c 2
6 c 3

4.7 Basic data manipulation

As one would expect, data can be selected, recoded, sorted, and merged using the appro-
priate commands.

4.7.1 Editing the data in a data.frame

To change just one or two values in small data frame or matrix, use the functions edit
and fix.

x <- edit(my.data) #will open an edit window and allow changes, which are then put into x, keeping the old version in my.data

fix(my.data) #immediately changes my.data.
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4.7.2 Modifying particular cases by a formula

An alternative to using the edit or fix functions is to operate on the data directly. Con-
sider the data.frame my.data. Select those cases for which condition is equal to “e” and
increase the values by 2

> my.data[my.data$condition == "e", 2] <- my.data[my.data$condition == "e", 2] + 2

> my.data

condition result
1 e 4
2 e 5
3 e 6
4 c 1
5 c 2
6 c 3

This ability to manipulate data that meet certain logical conditions is very powerful, for
it can be done to turn particular observations into missing data (NA), or to select just
certain cases.

4.7.3 Selecting particular cases or conditions

Just as one can modify certain cases that meet certain conditions, so can one select just
those cases for a new object.

> my.subset <- subset(my.data, my.data$condition == "e")

> my.subset

condition result
1 e 4
2 e 5
3 e 6

4.7.4 Sorting the data by a particular variable

A frequently asked question is how to sort the data file according to some criterion. Con-
sider the data.frame, people, made up of names and numbers. The order of names can
be found by the order function, and then a new data.frame can be created using these
orders.
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> names <- c("Roger", "Ellen", "Anne", "Mary", "Carolyn")

> numb <- c(9, 10, 32, 35, 39)

> people <- data.frame(names, numbers = numb)

> people

names numbers
1 Roger 9
2 Ellen 10
3 Anne 32
4 Mary 35
5 Carolyn 39

> sorted <- people[order(people$names), ]

> sorted

names numbers
3 Anne 32
5 Carolyn 39
2 Ellen 10
4 Mary 35
1 Roger 9

4.7.5 Merging two data.frames

Suppose we have another data.frame, gender, that catalogs the genders of the same people.
To merge these two data.frames together, use the merge function specifying the variable
to use to combine the two data.frames.

> names <- c("Roger", "Ellen", "Anne", "Mary", "Carolyn")

> gen <- c("M", rep("F", 4))

> gender <- data.frame(names, gender = gen)

> gender

names gender
1 Roger M
2 Ellen F
3 Anne F
4 Mary F
5 Carolyn F

> merge(gender, people, by = "names")

names gender numbers
1 Anne F 32
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2 Carolyn F 39
3 Ellen F 10
4 Mary F 35
5 Roger M 9

Using this technique, we routinely merge data files of 40-60,000 records with 300 variables
with other files with 100 variables.

5 Basic descriptive statistics

Basic descriptive statistics are most easily reported by using the summary, mean and Stan-
dard Deviations (sd) commands. Using the describe function available in the psych
package produces output more useful to most psychologists. Graphical displays that also
capture the data are available as a boxplot.

> describe(my.data)

var n mean sd median trimmed mad min max range skew kurtosis se
condition* 1 6 1.5 0.55 1.5 1.5 0.74 1 2 1 0 -2.31 0.22
result 2 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0 -1.80 0.76

It is sometimes useful to report statistics by a particular group. This can be done using the
describe.by function. We use a different data set sat.act which has self reported SAT
Verbal, Quant and ACT scores for 700 participants collected on the personality-project.org
web site. In addition, we have gender, education and age. The first describe is for all the
cases, the second is broken down by gender (males=1, females=2). To make the output
shorter, the option to not show the skews and kurtosi is set.

> data(sat.act)

> describe(sat.act, skew = FALSE)

var n mean sd median trimmed mad min max range se
gender 1 700 1.65 0.48 2 1.68 0.00 1 2 1 0.02
education 2 700 3.16 1.43 3 3.31 1.48 0 5 5 0.05
age 3 700 25.59 9.50 22 23.86 5.93 13 65 52 0.36
ACT 4 700 28.55 4.82 29 28.84 4.45 3 36 33 0.18
SATV 5 700 612.23 112.90 620 619.45 118.61 200 800 600 4.27
SATQ 6 687 610.22 115.64 620 617.25 118.61 200 800 600 4.41

> describe.by(sat.act, sat.act$gender, skew = FALSE)

$`1`
var n mean sd median trimmed mad min max range se
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gender 1 247 1.00 0.00 1 1.00 0.00 1 1 0 0.00
education 2 247 3.00 1.54 3 3.12 1.48 0 5 5 0.10
age 3 247 25.86 9.74 22 24.23 5.93 14 58 44 0.62
ACT 4 247 28.79 5.06 30 29.23 4.45 3 36 33 0.32
SATV 5 247 615.11 114.16 630 622.07 118.61 200 800 600 7.26
SATQ 6 245 635.87 116.02 660 645.53 94.89 300 800 500 7.41

$`2`
var n mean sd median trimmed mad min max range se

gender 1 453 2.00 0.00 2 2.00 0.00 2 2 0 0.00
education 2 453 3.26 1.35 3 3.40 1.48 0 5 5 0.06
age 3 453 25.45 9.37 22 23.70 5.93 13 65 52 0.44
ACT 4 453 28.42 4.69 29 28.63 4.45 15 36 21 0.22
SATV 5 453 610.66 112.31 620 617.91 103.78 200 800 600 5.28
SATQ 6 442 596.00 113.07 600 602.21 133.43 200 800 600 5.38

describe.by is just an example of a more basic R function, by. As can be seen in the help
page for by, an alternative way to do the preceding analysis is just

> by(sat.act, sat.act$gender, describe, skew = FALSE)

sat.act$gender: 1
var n mean sd median trimmed mad min max range se

gender 1 247 1.00 0.00 1 1.00 0.00 1 1 0 0.00
education 2 247 3.00 1.54 3 3.12 1.48 0 5 5 0.10
age 3 247 25.86 9.74 22 24.23 5.93 14 58 44 0.62
ACT 4 247 28.79 5.06 30 29.23 4.45 3 36 33 0.32
SATV 5 247 615.11 114.16 630 622.07 118.61 200 800 600 7.26
SATQ 6 245 635.87 116.02 660 645.53 94.89 300 800 500 7.41
-----------------------------------------------------------------------------------------------
sat.act$gender: 2

var n mean sd median trimmed mad min max range se
gender 1 453 2.00 0.00 2 2.00 0.00 2 2 0 0.00
education 2 453 3.26 1.35 3 3.40 1.48 0 5 5 0.06
age 3 453 25.45 9.37 22 23.70 5.93 13 65 52 0.44
ACT 4 453 28.42 4.69 29 28.63 4.45 15 36 21 0.22
SATV 5 453 610.66 112.31 620 617.91 103.78 200 800 600 5.28
SATQ 6 442 596.00 113.07 600 602.21 133.43 200 800 600 5.38
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