An introduction to R

William Revelle
Swift 315
email: revelle@northwestern.edu

March 29, 2009

Contents

1 Objectives 1
2 Requirements and readings 2
3 Day 1: What is R? An introduction 2
3.1 What is it? 2
3.2 How to get it: CRAN (Comprehensive R Archive Network) 3
3.3 Packages and Task Views 4
3.4 Help and Guidance 4
3.5 Package vignettes 5
3.6 Basic R commands and syntax 5
3.6.1 R is just a fancy calculator 5
3.6 .2 R as a graphing calculator 7
3.6.3 R is also a statistics table 10
3.6.4 R will make up data 12
4 Entering or getting the data 12
4.1 Getting data from a remote file server 12
4.2 Getting data from a local file 15
4.3 Copying the data from the clipboard 15
4.4 Reading from an SPSS file 15
4.5 Getting the data from a built in data set 16
4.6 Entering data manually-understanding data structures 16
4.6.1 Data structures 16
4.6.2 Entering data into a data.frame 19
4.7 Basic data manipulation 20
4.7.1 Editing the data in a data.frame 20
4.7.2 Modifying particular cases by a formula 20
4.7.3 Selecting particular cases or conditions. 21
4.7.4 Sorting the data by a particular variable 21
4.7.5 Merging two data.frames 22
5 Basic descriptive statistics 22
6 Day 2: Graphical data displays and Exploratory Data Analysis 24
6.1 The Scatter Plot Matrix (SPLOM) 25
6.2 Bars vs. Boxes 25
6.3 Graph basics 28
6.4 Regression plots with fits 28
6.5 ANOVA plots 28
7 More complex graphics 28
7.1 Examples of Rgraphviz. 34
7.2 Using the maps package to process GIS data files 35
8 Day 3: The general linear model and its special cases 38
8.1 Regression 38
8.2 Analysis of Variance 38
8.3 Multi-level models as an alternative to repeated measures ANOVA 38
9 Day 4: Multivariate analysis 38
9.1 Factor analysis and Principal Components Analysis 38
9.2 Cluster Analysis, Multidimensional Scaling 38
9.3 Structural Equation Modeling 38
10 Day 5: R as a programming language 38
10.1 R in the lab 38
10.2 R in the classroom 38
10.3 Using R and Latex or OpenOffice to prepare documents 38
11 Various web resources 38
This short course will meet in Swift Hall 107 from 5-7 on Monday, Tuesday, Wednesday (March 30-April 1) and Monday, Tuesday (April 6-7).

1 Objectives

There are many possible statistical programs that can be used in psychological research. They differ in multiple ways, at least some of which are ease of use, generality, and cost. Some of the more common programs used are SAS, SPSS, and Systat. These programs have GUIs (Graphical User Interfaces) that are relatively easy to use but that are unique to each package. These programs are also very expensive and limited in what they can do. Although convenient to use, GUI based operations are difficult to discuss in written form. When teaching statistics or communicating results, it is helpful to use examples that others may use, perhaps in other computing environments. This course describes an alternative approach that is widely used by practicing statisticians, the statistical environment R.

R is used in various courses here at NU and has been adopted as the primary stats program for teaching at the University of Virginia and the University of Colorado (among others). I use it in teaching Psych 205, 371, 405, and 454.

The objective of this short course is very simple: to have you learn enough about R to start using it to facilitate your teaching and research. You will not, however be fluent in R. But, by the end of the course you should be wondering why you ever used SPSS or SAS. For "this is R. There is no if. Only how." (R fortune).

2 Requirements and readings

A willingness to learn and to ask questions. Bringing a personal computer to class would not be a bad idea.

Handouts of the lecture notes will be linked from this outline, Most of the handouts will be either pdfs of slides or pdfs of example code.
There are a number of tutorials on learning R , ranging from the short to the extensive. The definitive short text is An Introduction to R by Venables et al. (2008). This may either be purchased (proceeds go to the R Foundation) or downloaded. For those who are familiar with SPSS or SAS, the book, R for SAS and SPSS Users by Muenchen (2009), is a good introduction. (See his webpage at http://rforsasandspssusers.com/). For psychologists, my tutorial Using R for psychological research:A simple guide to an elegant package is not a bad beginning. See also the short and very short versions of that for undergraduates. As an example of what a bright undergraduate can do to help other undergraduates use R , see K. Funkhouser's Using R to analyze a simple data set,

There are a number of other very good tutorials on the web. An essential aid is the R reference card and the search engines R seek: a search engine for R and Jonathan Baron's search engine of the R help archives.

3 Day 1: What is R? An introduction

3.1 What is it?

The R Development Core Team (2008) has developed an extremely powerful "language and environment for statistical computing and graphics" and a set of packages that operate within this programming environment (R). The R program is an open source version of the statistical program S and is very similar to the statistical program based upon S, S-PLUS (also known as $\mathrm{S}+$). Although described as merely "an effective data handling and storage facility [with] a suite of operators for calculations on arrays, in particular, matrices" R is, in fact, a very useful interactive package for data analysis. When compared to most other stats packages used by psychologists, R has at least three compelling advantages: it is free, it runs on multiple platforms (e.g., Windows, Unix, Linux, and Mac OS X and Classic), and combines many of the most useful statistical programs into one quasi integrated environment. R is fre ${ }_{4}^{1}$, open source software as part of the GNU ${ }^{2}$ Project. That is, users are free to use, modify, and distribute the program, within the limits of the GNU non-license). The program itself and detailed installation instructions for Linux, Unix, Windows, and Macs are available through CRAN (Comprehensive R Archive Network) at http://www.r-project.org
The R Development Core Team (2008) releases an updated version of R about every six months. That is, as of March, 2009, the current version of 2.8 .1 will be replaced with 2.9 .0 sometime in April. Bug fixes are then added with a sub version number (e.g. 2.8.1 fixed minor problems with 2.8.0). It is recommended to use the most up to date version, as it will incorporate various improvements and operating efficiencies. Although many run R as a language and text oriented programming environment, there are GUIs available for PCs, Linux and Macs. See for example, R Commander by John Fox or R-app for the Macintosh developed by Stefano Iacus and Simon Urbanek. Compared to the basic PC environment, the Mac GUI is to be preferred.

R is an integrated, interactive environment for data manipulation and analysis that includes functions for standard descriptive statistics (means, variances, ranges) and also includes useful graphical tools for Exploratory Data Analysis. In terms of inferential statistics R has many varieties of the General Linear Model including the conventional special cases of Analysis of Variance, MANOVA, and linear regression. Statisticians and statistically minded people around the world have contributed packages to the R Group and maintain a very active news group offering suggestions and help. The growing collection of packages and the ease with which they interact with each other and the core R is perhaps the greatest advantage of R. Advanced features include correlational packages for multivariate

[^0]analyses including Factor and Principal Components Analysis, and cluster analysis. Advanced multivariate analyses packages that have been contributed to the R-project include one for Structural Equation Modeling (sem, Hierarchical Linear Modeling (referred to as non linear mixed effects in the nlme4 package) and taxometric analysis. All of these are available in the (>1400) free packages distributed by the R group at CRAN. Many of the functions described in this book are incorporated into the psych package. Other packages useful for psychometrics are described in a task-view at CRAN. In addition to being a environment of prepackaged routines, R is a interpreted programming language that allows one to create specific functions when needed.

R is also an amazing program for producing statistical graphics. A collection of some of the best graphics is available at the webpage addictedtoR with a complete gallery of thumbnail of figures.

3.2 How to get it: CRAN (Comprehensive R Archive Network)

Although it is possible that your local computer lab already has R, it is most useful to do analyses on your own machine. In this case you will need to download the R program from the R project and install it yourself. Go to the R home page at http://www.r-project.org and then choose the Download from CRAN (Comprehensive R Archive Network) option. This will take you to list of mirror sites around the world. You may download the Windows, Linux, or Mac versions at this site. For most users, downloading the binary image is easiest and does not require compiling the program.

3.3 Packages and Task Views

One of the advantages of R is that it can be supplemented with additional programs that are included as packages using the package manager. (e.g., sem does structural equation modeling) or that can be added using the source command. Most packages are directly available through the CRAN repository. Others are available at the BioConductor http://www.bioconductor.org repository. Yet others are available at "other" repositories. The psych package Revelle (2009) may be downloaded from CRAN or from the http: //personality-project.org/r repository. The concept of a "task view" has made downloading relevant packages very easy. For instance, the install.views("psychometrics") command will download over 20 packages that do various types of psychometrics.

For any other than the default packages to work, you must activate it by either using the Package Manager or the library command:

- e.g., library(psych) or library(sem)
- entering ?psych will give a list of the functions available in the psych package as well as an overview of their funtionality.
- objects(package:psych) will list the functions available in a package (in this case, psych).

3.4 Help and Guidance

R is case sensitive and does not give overly useful diagnostic messages. If you get an error message, don't be flustered but rather be patient and try the command again using the correct spelling for the command.

When in doubt, use the help(somefunction) function. This is identical to ? somefunction where some function is what you want to know about. e.g.,
?read.table \#ask for help in using the read.table function - see the answer in the help window, or
help(read.table) \#another way of asking for help. - see the help window
RSiteSearch("keyword") will open a browser window and return a search for "keyword" in all functions available in Rand the associated packages as well (if desired) the R-Help News groups.

3.5 Package vignettes

All packages have help pages for each function in the package. These are meant to help you use a function that you already know about, but not to introduce you to new functions. An increasing number of packages have a package "vignettes" that give more of an overview of the program than a detailed description of any one function. These vignettes are accessible from the help window and sometimes as part of the help index for the program. The two vignettes for the psych package are also available from the personality project web page. (An overview of the psych package and Using the psych package as a front end to the sem package).

3.6 Basic R commands and syntax

There are more than 10,000 possible one line commands that one can enter when using $R 3$ and no one can be expected to know them all. Even those of us who write packages need help remembering the possible commands and syntax of our own packages. In fact,

[^1]the Rpad handout is just one of many ways of remembering the appropriate command for core R. Even so, the basic concept of all commands is fairly easy to grasp in terms of the following simple analogy: R is just a fancy calculator that draws graphics and has built in statistic tables.

3.6.1 R is just a fancy calculator

One can think of R as a fancy graphics calculator. Enter a command and look at the output. Thus,
$>2+2$
[1] 4
> 3 ^4
[1] 81
> pi
[1] 3.141593
In the above example, the $>$ symbol is the R prompt and the next line [1] is the answer. When copying a line like this, do not include the $>$ symbol. The \# symbol is used to add comments to lines (and will not show when running R to prepare documents!). It is helpful to use a text editor (perhaps the one available in R, perhaps another one) to write the commands out before copying them into R . The up arrow command will echo the previous command on the terminal and allow for editing.

At the abstract level, almost all operations in R consists of executing a function on an object. The result is a new object. This very simple idea allows the output of any operation to be operated on by another function.

Command syntax tends to be of the form:
variable $=$ function (parameters) or
variable <- function (parameters)
The $=$ and the $<-$ symbol imply replacement, not equality. The preferred style is to use the $<-$ symbol to avoid confusion with the test for equality $(==)$.
The result of an operation will not necessarily appear unless you ask for it. The command $\mathrm{x}<-\mathrm{c}(1,3,5,7)$
m <- mean(x)
will create the vector x made up of the numbers $1,3,5,7$, and set m equal to the mean of x but will not print anything on the console without the additional request
m.
however, just asking mean(x)
will find the mean and print it.

```
> x <- c(1, 3, 5, 7)
>m <- mean(x)
>m
[1] 4
>mean(x)
[1] 4
> sd(x)
```

[1] 2.581989
In addition to simple arithmetic, R allows you to create vectors or matrices and do operations on these matrices. The first example forms the vector V made up of the numbers from 1 to 10 . The second finds the 3×5 matrix, m, made up of randomly chosen numbers sampled (with replacement) from the numbers 0-9. In this later example, to make the example replicable for the reader, the random number seed is set to a well known but arbitrary value (Adams, 1980). Using the fancy desk calculator ability of R, the last operation is a matrix operation that finds the sum of the cross products of M. That is, the sum of the squares of the columns of M (the diagonals) and the sum of the products of each column with each other column.

```
> set.seed(42)
> V <- seq(1:5)
> M <- matrix(sample(5, 15, replace = TRUE), ncol = 3, nrow = 5)
> V
```

[1] 12345
> M

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	5	3	3
$[2]$,	5	4	4
$[3]$,	2	1	5
$[4]$,	5	4	2
$[5]$,	4	4	3

> V * M

	[,1]	[,2]	[,3]
[1,]	5	3	3
[2,]	10	8	8
[3,]	6	3	15
[4,]	20	16	8
[5,]	20	20	15
$>t(M) \% * \% M$			
	[,1]	[,2]	[,3]
[1,]	95	73	67
[2,]	73	58	50
[3,]	67	50	63

3.6.2 $\quad R$ as a graphing calculator

Suppose we want to present a graph comparing two normal distributions with different means and sigmas:

3.6.3 R is also a statistics table

It has been suggested by some that you should never buy a statistics book that has probability tables in it, because that means that the author did not know about modern statistics and the various distributions in R. Many statistics books include tables of the t or F or χ^{2} distribution. By using R this is unnecessary since these and many more distributions can be obtained directly. Consider the normal distribution as an example. dnorm(x, mean=mu, sd=sigma) will give the probability density of observing that x in a distribution with mean $=\mathrm{mu}$ and standard deviation= sigma. pnorm ($\mathrm{q}, \mathrm{mean}=0, \mathrm{sd}=1$) will give the probability of observing the value q or less. qnorm(p, mean $=0$, $s d=1$) will give the quantile value of a value with probability p . rnorm(n,mean,sd) will generate n random observations sampled from the normal distribution with specified mean and standard deviation. Thus, to find out what z value has a .05 probability we ask for qnorm (.05). Or, to evaluate the probability of observing a z value of 2.5 , specify pnorm (2.5). (These last two examples are one side p values).

Applying these prefixes (d,p,q, r) to the various distributions available in R allows us to evaluate or simulate many different distributions (Table 1).

Consider the following examples.

```
> pt(2, 6)
```

```
> curve(dnorm(x, 1, 0.5), -3, 3, ylab = "Probability of x", main = "Comparing two distribut
> curve(dnorm(x, 0, 1), add = TRUE)
```


Comparing two distributions

Figure 1: Two normal distributions drawn using the curve function.

Figure 2: The normal curve with various colorings is a nice example of a simple but useful graphic.
[1] 0.9537868
> pnorm(2)
[1] 0.9772499
> dnorm(-1)
[1] 0.2419707
> $p f(3.5,1,20)$
[1] 0.923926
> $q f(0.95,1,60)$
[1] 4.001191
> qchisq(0.95, 1)
[1] 3.841459

3.6.4 R will make up data

Although making up data is normally considered a bad thing for a researcher to do, when we call it "simulation" it is considered scientific. All of the distributions listed in Table 1 can be prefaced with "r" to create (pseudo) random data with that particular shape. Consider the following example where the data are generated and then their histogram is drawn (Figure 3).

This ability to simulate data is particularly useful when teaching statistics, or when trying out a new method. For if you know what the underlying model is, it is easier to understand what how well the method works. When teaching about distributions, it is useful to show what happens if we take progressively larger samples of the data. This is shown in Figure 4 where we plot the means of samples of size $1,2,4$, and 8 . This uses the replicate and rowMeans functions. The last two panels show how to combine multiple commands into one line.

4 Entering or getting the data

For most data analysis, rather than manually enter the data into R, it is probably more convenient to use a spreadsheet (e.g., Excel or OpenOffice) as a data editor, save as a tab or comma delimited file, and then read the data from the file. Many of the examples in this tutorial assume that the data have been entered this way. Many of the examples in

Table 1: Some of the most useful distributions for psychometrics that are available as functions. To obtain the density, prefix with d, probability with p, quantiles with q and to generate random values with r. (e.g., the normal distribution may be chosen by using dnorm, pnorm, qnorm, or rnorm.) Each function has specific parameters, some of which take default values, some of which require being specified. Use help for each function for details.

Distribution	base name	P 1	P 2	P 3	example application
Normal	norm	mean	sigma		Most data
Multivariate normal	mvnorm	mean	r	sigma	Most data
Log Normal	lnorm	log mean	log sigma		income or reaction time
Uniform	unif	min	max		rectangular distributions
Binomial	binom	size	prob		Bernuilli trials (e.g. coin flips)
Student's t	t	df		nc	Finding significance of a t-test
Multivariate t	mvt	df	corr	nc	Multivariate applications
Fisher's F	f	$\mathrm{df1}$	df 2	nc	Testing for significance of F test
χ^{2}	chisq	df		nc	Testing for significance of χ^{2}
Beta	beta	shape1	shape2	nc	distribution theory
Cauchy	cauchy	location	scale		Infinite variance distribution
Exponential	exp	rate			Exponential decay
Gamma	gamma	shape	rate	scale	distribution theoryh
Hypergeometric	hyper	m	n	k	
Logistic	logis	location	scale		Item Response Theory
Poisson	pois	lambda			Count data
Weibull	weibull	shape	scale		Reaction time distributions

```
> op <- par(mfrow = c(2, 2))
> n <- 1000
> x <- rnorm(n)
> hist(x, main = "Normal")
> x <- runif(n)
> hist(x, main = "Rectangular")
> x <- rpois(n, 3)
> hist(x, main = "Poisson")
> x <- rlnorm(n)
> hist(x, main = "Log Normal")
> op <- par(mfrow = c(1, 1))
```


Figure 3: Histograms of four different random distributions, the normal (rnorm), the rectangular or uniform (runif), the Poisson (rpois), and the lognormal (rlnorm). The first op command specifies that we want a 2×2 plot, the second one returns us to the normal 1 x 1 plot.

```
> op <- par(mfrow = c(2, 2))
> n <- 1000
> x <- runif(n)
> hist(x, main = "1 case")
> x <- rowMeans(replicate(2, runif(n)))
> hist(x, main = "2 cases", xlim = c(0, 1))
> hist(rowMeans(replicate(4, runif(n))), main = "4 cases", xlim = c(0, 1))
> hist(rowMeans(replicate(8, runif(n))), main = "8 cases", xlim = c(0, 1), xlab = "Mean of
> op <- par(mfrow = c(1, 1))
```


Figure 4: Histograms of the means of four different sample sizes where the samples are taken from a uniform distribution. This makes use of the replicate and rowSums functions, as well as the runif and hist functions.
the help menus have small data sets entered using the $c()$ command or created on the fly. It is also possible to read data in from a remote file server. Alternatively, if you have data in a SAS or SPSS file, there are functions in the foreign package to import them.

Using the copy.clipboard() function from the psych package, it is also possible to have a data file open in a text editor or spreadsheet program, copy the relevant lines to the clipboard, and then read the clipboard directly into R.

Finally, many packages include example data sets that can be accessed directly using the data command. Thus, to get a number of factor analysis examples with a bifactor structure, the bifactor data set is called to make the seven data sets within it available.

4.1 Getting data from a remote file server

For the first example, we read data from a file server in the Personality-MotivationCognition lab at Northwestern University that contains the responses for several hundred subjects on 13 personality scales (5 from the Eysenck Personality Inventory (EPI), 5 from a Big Five Inventory (BFI), one Beck Depression, and two anxiety scales). The data are taken from a study in the Personality, Motivation, and Cognition Laboratory. The file is structured normally, i.e. rows represent different subjects, columns different variables, and the first row gives subject labels. Had we saved this file as comma delimited, we would add the separation (sep=",") parameter.

```
#specify the name and address of the remote file
> datafilename <- "http://personality-project.org/r/datasets/maps.mixx.epi.bfi.data"
#now read the data file
> my.data <- read.table(datafilename,header=TRUE) #read the data file
```


4.2 Getting data from a local file

More typically, the data are stored somewhere on your computer in a tab delimited or comma delimited file. The process is equally easy, in that you first locate the file and then read it.

```
> datafilename <- file.choose() #where you dynamically can go to find the file
> my.data <- read.table(datafilename,header=TRUE) #read the data file
```


4.3 Copying the data from the clipboard

Yet another alternative is to directly access the data file outside of R, copy the data to the clipboard, and then read the clipboard using the read.clipboard function.

```
> my.data <- read.clipboard() # if there are complete cases and each column has an identif
> my.data <- read.clipboard(header=FALSE) # if there are complete cases and columns do not
> my.data <- read.clipboard(sep="t") #if the data come from a spreadsheet with blank cells
> my.data <- read.clipboard.csv() #if the data were copied from a comma delimited file
```


4.4 Reading from an SPSS file

To read from an SPSS or SAS data file, it is necessary to first load the foreign.

```
> library(foreign)
> my.spss.file.name <- file.choose() #where you dynamically can go to find the file
> my.data <- read.spss(my.spss.file.name,to.data.frame=TRUE)
```


4.5 Getting the data from a built in data set

Because we want to demonstrate the same data set many times and the user is not necessarily connected to the internet, many packages have built in data sets. A list of all available sets can be found by the data() command. The data sets within a package are found by specifying the package. For the next examples, we use the epi.bfi data set.

```
> data(package = "psych")
> data(epi.bfi)
> my.data <- epi.bfi
```

The data are now in the data.frame "my.data". Data.frames allow one to have columns that are either numeric or alphanumeric. They are conceptually a generalization of a matrix in that they have rows and columns, but unlike a matrix, some columns can be of different "types" (integers, reals, characters, strings) than other columns. But how do you know they are there? R is a somewhat reticent program and will not give some affirmative message that it has worked, but just do it. The functions dim and names can be used to find out how many variables and cases were read, and what their names are.

```
> dim(my.data)
```

[1] $231 \quad 13$

```
> names(my.data)
```

```
[1] "epiE" "epiS" "epiImp" "epilie" "epiNeur" "bfagree" "bfcon" "bfext"
[12] "traitanx" "stateanx"
```


4.6 Entering data manually-understanding data structures

Everything in R is an object. Some of these objects are functions, some are the results of functions. Thinking very abstractly, the process of analysis is to apply some function to some object and return a new object. Knowing the structures of these objects allows a better understanding of how to use them. In particular, if it is necessary to enter data manually, it is useful to know the various types of data structures .

4.6.1 Data structures

elements : These are single values which may be integers, reals, logicals, factors, or character (strings). They are actually thought of as vectors of length one and have no dimensions.
vectors These are the basic object in R and are ordered sets of values. They have length and are of dimension one. They may be formed by the concatenation function c. E.g., x $<-\mathrm{c}(1,4,6)$, y $<-\mathrm{c}($ "apples","oranges"), z <- c(TRUE, FALSE, TRUE). Elements of a vector may be addressed by location ($\mathrm{x}[2]$ has the value of 4).
matrices Matrices are just vectors of vectors. That is to say, they are two dimensional arrays where the elements are all of the same type. Elements may be addressed by location ($\mathrm{X}[\mathrm{i}, \mathrm{j}]$ is the element in the ith row and the jth column of X). More useful, $\mathrm{X}[\mathrm{i}$,$] is$ the entire ith column, $\mathrm{X}[, \mathrm{j}]$ is the entire jth row.
data.frames A data.frame appears to be the same as a matrix, but may have columns of different types. Each column must be of the same length. Elements may be addressed by location (X.df[i,j])
lists The most general way of aggregating objects. Lists have members of the list, each member may itself be a list, matrix, vector or element.

Below are examples of creating vectors (x, y, z), matrices (X, Y), a data.frame (y.z.df), and then finally, a list (L) made up of all of the prior objects.

```
> x <- c(1, 2, 4)
> y <- c(letters[1:6], LETTERS[1:4])
> z<- seq(10, 28, 2)
> X <- matrix(1:20, ncol = 4)
> Y <- matrix(c(11, 22, 44, 4, 15, 42), ncol = 3, byrow = TRUE)
> yz.df <- data.frame(A = y, b = z)
> L <- list(a = x, b = y, c = z, d = X, e = Y, f = yz.df)
> X
[1] 1 2 4
```

$$
>y
$$

[1] "a" "b" "c" "d" "e" "f" "A" "B" "C" "D"
$>z$
[1] $\begin{array}{lllllllllll}10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28\end{array}$
$>X$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	6	11	16
$[2]$,	2	7	12	17
$[3]$,	3	8	13	18
$[4]$,	4	9	14	19
$[5]$,	5	10	15	20

$>Y$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	11	22	44
$[2]$,	4	15	42

> yz.df
A b
1 a 10
2 b 12
3 c 14
4 d 16
5 e 18
6 f 20
7 A 22
8 B 24
9 C 26
10 D 28
> L
\$a
[1] 124
\$b
[1] "a" "b" "c" "d" "e" "f" "A" "B" "C" "D"
\$c

```
[1] 10
```

\$d

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	6	11	16
$[2]$,	2	7	12	17
$[3]$,	3	8	13	18
$[4]$,	4	9	14	19
$[5]$,	5	10	15	20

$\$ \mathrm{e}$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	11	22	44
$[2]$,	4	15	42

\$f
A b
1 a 10
2 b 12
3 c 14
4 d 16
5 e 18
6 f 20
7 A 22
8 B 24
9 C 26
10 D 28
Thinking analogically, the data.frame is the most similar to the standard spreadsheet way of organizing data, and most statistical analysis will make use of data.frames or of matrices. The list structure is a particularly appealing way of storing the results of any particular analysis, for it can hold different types of information as one, high level, object.

If you do know, or can remember the structure of a particular object, then the str function will retrieve it for you. This is particularly useful when running a complex statistical analysis, for only some results will be shown, even though far more information is hidden in the object.

```
>str(L)
List of 6
    $ a: num [1:3] 1 2 4
    $ b: chr [1:10] "a" "b" "c" "d" ...
```

```
$ c: num [1:10] 10 12 14 16 18 20 22 24 26 28
$ d: int [1:5, 1:4] 1 2 3 4 5 6 7 8 9 10 ...
$ e: num [1:2, 1:3] 11 4 22 15 44 42
$ f:'data.frame': 10 obs. of 2 variables:
    ..$ A: Factor w/ 10 levels "a","A","b","B",..: 1 3 5 7 9 10 2 4 6 8
    ..$ b: num [1:10] 10 12 14 16 18 20 22 24 26 28
```


4.6.2 Entering data into a data.frame

A data.frame is just a collection of objects, each of the same length where subjects are rows and variables are columns. Thus, an experiment might have one or more condition variables, and one or more outcome variables. Consider a simple example of two conditions (control vs. experimental) and a measured variable.

```
condition = c("e", "e", "e", "c", "c", "c")
> result <- c(2, 3, 4, 1, 2, 3)
my.data <- data.frame(condition, result)
my.data
    condition result
1 e 2
2 e 3
3 e 4
4 c 1
5 c 2
6 c 3
```


4.7 Basic data manipulation

As one would expect, data can be selected, recoded, sorted, and merged using the appropriate commands.

4.7.1 Editing the data in a data.frame

To change just one or two values in small data frame or matrix, use the functions edit and fix.

```
x <- edit(my.data) #will open an edit window and allow changes, which are then put into x,
```

fix(my.data) \#immediately changes my.data.

4.7.2 Modifying particular cases by a formula

An alternative to using the edit or fix functions is to operate on the data directly. Consider the data.frame my.data. Select those cases for which condition is equal to "e" and increase the values by 2

```
my.data[my.data$condition == "e", 2] <- my.data[my.data$condition == "e", 2] + 2
> my.data
    condition result
1 e 4
2 e 5
3 e 6
4 c 1
5 c 2
6 c 3
```

This ability to manipulate data that meet certain logical conditions is very powerful, for it can be done to turn particular observations into missing data (NA), or to select just certain cases.

4.7.3 Selecting particular cases or conditions

Just as one can modify certain cases that meet certain conditions, so can one select just those cases for a new object.

```
> my.subset <- subset(my.data, my.data$condition == "e")
> my.subset
    condition result
1 e 4
2 e 5
3 e 6
```


4.7.4 Sorting the data by a particular variable

A frequently asked question is how to sort the data file according to some criterion. Consider the data.frame, people, made up of names and numbers. The order of names can be found by the order function, and then a new data.frame can be created using these orders.

```
> names <- c("Roger", "Ellen", "Anne", "Mary", "Carolyn")
> numb <- c(9, 10, 32, 35, 39)
> people <- data.frame(names, numbers = numb)
> people
\begin{tabular}{lrr} 
& names & numbers \\
1 & Roger & 9 \\
2 & Ellen & 10 \\
3 & Anne & 32 \\
4 & Mary & 35 \\
5 & Carolyn & 39
\end{tabular}
sorted <- people[order(people$names), ]
sorted
    names numbers
3 Anne 32
Carolyn 39
Ellen 10
M Mary 35
1 Roger 9
```


4.7.5 Merging two data.frames

Suppose we have another data.frame, gender, that catalogs the genders of the same people. To merge these two data.frames together, use the merge function specifying the variable to use to combine the two data.frames.

```
> names <- c("Roger", "Ellen", "Anne", "Mary", "Carolyn")
> gen <- c("M", rep("F", 4))
> gender <- data.frame(names, gender = gen)
> gender
\begin{tabular}{lcr} 
& names & gender \\
1 & Roger & M \\
2 & Ellen & F \\
3 & Anne & F \\
4 & Mary & F \\
5 & Carolyn & F
\end{tabular}
> merge(gender, people, by = "names")
    names gender numbers
1 Anne F 32
```

2	Carolyn	F	39
3	Ellen	F	10
4	Mary	F	35
5	Roger	M	9

Using this technique, we routinely merge data files of 40-60,000 records with 300 variables with other files with 100 variables.

5 Basic descriptive statistics

Basic descriptive statistics are most easily reported by using the summary, mean and Standard Deviations (sd) commands. Using the describe function available in the psych package produces output more useful to most psychologists. Graphical displays that also capture the data are available as a boxplot.

```
> describe(my.data)
\begin{tabular}{lrrrrrrrrrrr} 
& var n mean & sd median & trimmed & mad min max & range & skew kurtosis & se \\
condition* & 1 & 6 & 1.5 & 0.55 & 1.5 & 1.5 & 0.74 & 1 & 2 & 1 & 0 \\
result & 2 & 6 & 3.5 & 1.87 & 3.5 & 3.5 & 2.22 & 1 & 6 & 5 & 0
\end{tabular}
```

It is sometimes useful to report statistics by a particular group. This can be done using the describe.by function. We use a different data set sat.act which has self reported SAT Verbal, Quant and ACT scores for 700 participants collected on the personality-project.org web site. In addition, we have gender, education and age. The first describe is for all the cases, the second is broken down by gender (males=1, females=2). To make the output shorter, the option to not show the skews and kurtosi is set.

```
> data(sat.act)
> describe(sat.act, skew = FALSE)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & n & mean & & ian & ed & & & max & & se \\
\hline gender & 1 & 700 & 1.65 & 0.48 & 2 & 1.68 & 0.00 & 1 & 2 & 1 & 0.02 \\
\hline education & 2 & 700 & 3.16 & 1.43 & 3 & 3.31 & 1.48 & 0 & 5 & 5 & 0.05 \\
\hline age & 3 & 700 & 25.59 & 9.50 & 22 & 23.86 & 5.93 & 13 & 65 & 52 & 0.36 \\
\hline ACT & 4 & 700 & 28.55 & 4.82 & 29 & 28.84 & 4.45 & 3 & 36 & 33 & 0.18 \\
\hline SATV & 5 & 700 & 612.23 & 112.90 & 620 & 619.45 & 118.61 & 200 & 800 & 600 & 4.27 \\
\hline SATQ & 6 & 687 & 610.22 & 115.64 & 620 & 617.25 & 118.61 & 200 & 800 & 600 & 4.41 \\
\hline
\end{tabular}
> describe.by(sat.act, sat.act$gender, skew = FALSE)
$`'
    var n mean sd median trimmed mad min max range se
```

gender	1	247	1.00	0.00	1	1.00	0.00	1	1	0	0.00
education	2	247	3.00	1.54	3	3.12	1.48	0	5	5	0.10
age	3	247	25.86	9.74	22	24.23	5.93	14	58	44	0.62
ACT	4	247	28.79	5.06	30	29.23	4.45	3	36	33	0.32
SATV	5	247	615.11	114.16	630	622.07	118.61	200	800	600	7.26
SATQ	6	245	635.87	116.02	660	645.53	94.89	300	800	500	7.41

\$ ${ }^{\prime}$										
	var n	mean		ian	trimmed	mad	min	max	nge	se
gender	1453	2.00	0.00	2	2.00	0.00	2	2	0	0.00
education	2453	3.26	1.35	3	3.40	1.48	0	5	5	0.06
age	3453	25.45	9.37	22	23.70	5.93	13	65	52	0.44
ACT	4453	28.42	4.69	29	28.63	4.45	15	36	21	0.22
SATV	5453	610.66	112.31	620	617.91	103.78	200	800	600	5.28
SATQ	6442	596.00	113.07	600	602.21	133.43	200	800	600	5.38

describe. by is just an example of a more basic R function, by. As can be seen in the help page for by, an alternative way to do the preceding analysis is just

```
> by(sat.act, sat.act$gender, describe, skew = FALSE)
```

sat.act\$gender: 1

	var	n	mean	sd median	trimmed	mad min max	range	se			
gender	1	247	1.00	0.00	1	1.00	0.00	1	1	0	0.00
education	2	247	3.00	1.54	3	3.12	1.48	0	5	5	0.10
age	3	247	25.86	9.74	22	24.23	5.93	14	58	44	0.62
ACT	4	247	28.79	5.06	30	29.23	4.45	3	36	33	0.32
SATV	5	247	615.11	114.16	630	622.07	118.61	200	800	600	7.26
SATQ	6	245	635.87	116.02	660	645.53	94.89	300	800	500	7.41

6 Day 2: Graphical data displays and Exploratory Data Analysis

A compelling reason to use R is for its graphics capabilities. There are at least three different graphics options available, only one of which, base graphics will be discussed here. The others are lattice graphics and ggobi (based upon the grammar of graphics Wilkinson.

Although not all threats to inference can be detected graphically, one of the most powerful statistical tests for non-linearity and outliers is the well known but not often used "interoccular trauma test". A classic example of the need to examine one's data for the effect of non-linearity and the effect of outliers is the data set of Anscombe (1973) which is included as the data(anscombe) data set. The data set is striking for it shows four patterns of results, with equal regressions and equal descriptive statistics. The graphs differ drastically in appearance for one actually has a curvilinear relationship, two have one extreme score, and one shows the expected pattern. Anscombe's discussion of the importance of graphs is just as timely now as it was 35 years ago:

Graphs can have various purposes, such as (i) to help us perceive and appreciate some broad features of the data, (ii) to let us look behind these broad features and see what else is there. Most kinds of statistical calculaton rest on assumptions about the behavior of the data. Those assumptions may be false, and the calculations may be misleading. We ought always to try to check whether the assumptions are reasonably correct; and if they are wrong we ought to be able to perceive in what ways the are wrong. Graphs are very valuable for these purposes. (Anscombe, 1973, p 17).

6.1 The Scatter Plot Matrix (SPLOM)

The problem with suggesting looking at scatter plots of the data is the number of such plots grows by the square of the number of variables. A solution is the scatter plot matrix (SPLOM) available in the pairs.panels function which is based upon the pairs function. pairs.panels show the all the pairwise relationships, as well as histograms of the individual variables. Additional output includes the Pearson Product Moment Correlation Coefficient, the locally weighted polynomial regression (LOWESS), and a density curve for each variable (Figure 5). This kind of graph is particularly useful for less than about 10 variables. Students in an introductory methods course do not seem to realize that this is unusual way of plotting data.

```
> data(sat.act)
> pairs.panels(sat.act)
```


Figure 5: A SPLOM plot is a fast way of detecting non-linearities in the pair wise correlations as well as problems with distributions. For each cell below the diagonal, the x axis reflects the column variable, the y axis, the row variable.

```
> data(sat.act)
> pairs.panels(sat.act, scale = TRUE)
```


Figure 6: A probably not useful option in pairs.panels, is to scale the font size of the correlations to reflect their magnitude. More a demonstration of the range of possibilities in R graphics rather than a useful option.

6.2 Bars vs. Boxes

Many psychological graphs report means by using "bar graphs". These are particularly uninformative, for they carry no information about the amount of variability. Some then add error bars to form "dynamite plots", which are slightly more informative. A much more useful graphic that displays the median, interquartile range, and the 99% confidence intervals is the boxplot. For small data sets, showing the actual data points, with or without error bars is easy to do using the stripchart function.

Consider the following four data sets. What is the best way to describe their differences?

```
> set.seed(42)
> x1 <- c(sample(5, 20, replace = TRUE) + 3, rep(NA, 30))
> x2 <- c(sample(10, 20, replace = TRUE), rep(NA, 30))
> x3 <- c(sample(5, 10, replace = TRUE), sample(5, 10, replace = TRUE) + 10, rep(NA, 30))
> x4 <- sample(10, 50, replace = TRUE)
> X.df <- data.frame(x1, x2, x3, x4)
```


6.3 Graph basics

There are many options available for graphing, including the number of graphs to present per page, the x and y limits of the graph, the x and y labels, the point size, the color, the type of line, etc. These are all specified in the help for plot, and the associated links. Here are just a few of the high points.
par Graphic options are stored in an object, op. These can be changed by using the par function which will set the graphics options to particular values. A typical use is to set the number of plots per page. This is done before calling a specific plot function. op $<-\operatorname{par}(\operatorname{mfrow}=\mathrm{c}(3,2))$ \#will put 3 rows of 2 columns of graphs on a page
$\mathrm{x}(\mathrm{y})$ lim The ranges of the $\mathrm{x}(\mathrm{y})$ variable. These are set inside the particular graphics call. xlim $=\mathrm{c}(0,10) \#$ will make the axis range from 0 to 10 . I
type Choose between p,l,b (points, lines, both)
pch What plotting character to use.
lty What line type (solid, dashed, dotted, etc.) item[col] What color to use.

```
> op <- par(mfrow = c(3, 2))
> barplot(colMeans(na.omit(X.df)), ylim = c(0, 14), main = "A particularly uninformative gr
> box()
error.bars(X.df, bars = TRUE, ylim = c(0, 14), main = "Somewhat more informative")
> boxplot(X.df, main = "Better yet")
> stripchart(X.df, method = "stack", vertical = TRUE, main = "Perhaps better")
> stripchart(X.df, method = "stack", vertical = TRUE, main = "Add error bars")
> error.bars(X.df, add = TRUE)
> error.bars(X.df, main = "Just error bars")
> op <- par(mfrow = c(1, 1))
```


Figure 7: Six different ways of presenting the differences between four groups.

```
> op <- par(mfrow = c(3, 2))
> plot(1:10)
> plot(1:10, xlab = "Label the x axis", ylab = "label the y axis", main = "And add a title
+ pch = 21, col = "blue")
> points(1:4, 3:6, bg = "red", pch = 22)
> plot(1:10, xlab = "x is oversized", ylab = "y axis label", main = "Change the axis sizes"
+ bg = "blue", xlim = c(-5, 15), ylim = c(0, 20))
> points(1:4, 13:16, bg = "red", pch = 24)
> plot(1:10, ylab = "y axis label", main = "Line graph", pch = 23, bg = "blue", type = "l")
> plot(1:10, 2:11, xlab = "X axis", ylab = "y axis label", main = "Line graphs with and wit
+ pch = 23, bg = "blue", type = "b", ylim = c(0, 15))
> points(1:10, 12:3, type = "l", lty = "dotted")
> curve(cos(x), -2 * pi, 2 * pi, main = "Show a curve for a function")
> op <- par(mfrow = c(1, 1))
```


Figure 8: Various options of base graphics. Panel 1 is the basic call to plot. Panel 2 is the same, but with labels and titles. Panel 3 shows how to add more data, panel 4 how to do a line graph, panel 5 adds a second line, pamel 6 is just an example the curve function.

6.4 Regression plots with fits

A more typical graphics problem is to plot regression lines, perhaps with the underlying data.

In addition to showing the regression analysis for presentations, one can also examine the residuals and errors of the regression.

6.5 ANOVA plots

7 More complex graphics

In addition to the standard ways of displaying data, R includes packages meant for more graphical displays. These including mapping functions related to GIS files in the map package, density plots, and in particular graphs using such packages as Rraghviz.

7.1 Examples of Rgraphviz

Several of the psychometric functions in psych make use of Rgraphviz and are described in more detail in the vignette psych for sem. The next two figures take advantage of built in data sets, Harman74.cor and Thurstone.

This next figure, produced by structure.graph shows a symbolic structural equation path model.

```
> fxs <- structure.list(9, list(X1 = c(1, 2, 3), X2 = c(4, 5, 6), X3 = c(7, 8, 9)))
> phi <- phi.list(4, list(F1 = c(4), F2 = c(4), F3 = c(4), F4 = c(1, 2, 3)))
> fyx <- structure.list(3, list(Y = c(1, 2, 3)), "Y")
```


7.2 Using the maps package to process GIS data files

A great deal of geographic data is stored in GIS files on servers around the world. These GIS description files include all kinds of information, including the geographic coordinates of geographical regions (cities, states, countries, rivers, harbours, etc.) that can then be plotted using the maps package and its alternatives. The next figure is just a demonstration of what can be done (Figure 16).

```
> data(sat.act)
> with(sat.act, plot(SATQ ~ SATV, main = "SAT Quantitative varies with SAT Verbal"))
> model = lm(SATQ ~ SATV, data = sat.act)
> abline(model)
> lab <- paste("SATQ = ", round(model$coef[1]), "+", round(model$coef[2], 2), "* SATV")
> text(600, 200, lab)
```

SAT Quantitative varies with SAT Verbal

Figure 9: A regression data set with a regression line
> data(sat.act)
> color <- c("blue", "red")
> with(sat.act, plot(SATQ ~ SATV, col = color[gender], main = "SATQ varies by SATV and gend
> by(sat.act, sat.act\$gender, function(x) abline(lm(SATQ ~ SATV, data = x)))
sat.act\$gender: 1
NULL
sat.act\$gender: 2
NULL

SATQ varies by SATV and gender

Figure 10: A regression data set with two regression lines. The higher regression line is for the women.

```
> op <- par(mfrow = c(2, 2))
> plot(lm(SATQ ~ SATV, data = sat.act))
> op <- par(mfrow = c(1, 1))
```


Figure 11: default

The Holzinger-Harman 24 mental measurement problem

Figure 12: An example of tree diagram produced by the hierarchical cluster algorithm, ICLUST and drawn using Rgraphviz. The data set is 24 mental measurements used by Holzinger and Harman as an example factor analysis problem.

Figure 14: An example of bifactor model using Rgrapviz

```
> if (require(Rgraphviz)) {
+ sg3 <- structure.graph(fxs, phi, fyx)
+ } else {
+ plot(1:4, main = "Rgraphviz is not available")
+ }
```


Structural model

Figure 15: A symbolic structural model. Three independent latent variables are regressed on a latent Y.
> library(maps)
> map("county")

Figure 16: The counties of the US may be combined with demographic data to display income, voting records, education or any other data set organized by county.

8 Day 3: The general linear model and its special cases

8.1 Regression

8.2 Analysis of Variance
8.3 Multi-level models as an alternative to repeated measures ANOVA

9 Day 4: Multivariate analysis

9.1 Factor analysis and Principal Components Analysis
9.2 Cluster Analysis, Multidimensional Scaling
9.3 Structural Equation Modeling

10 Day 5: R as a programming language

10.1 R in the lab
10.2 R in the classroom
10.3 Using R and Latex or OpenOffice to prepare documents

LeTEXis a text processing and formating language that can be combined with the Sweave function in R to integrate statistics within a manuscript. This is also possible to do with OpenOffice.

11 Various web resources

http://www.rseek.org/R seek: a search engine for R
http://artsweb.uwaterloo.ca/~jalockli/R_exp_psy.pdfA psychology graduate students learns R

Draft of March 24, 2009.

References

Adams, D. (1980). The hitchhiker's guide to the galaxy. Harmony Books, New York, 1st American edition.

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1):1721.

Muenchen, R. A. (2009). R for SAS and SPSS Users. Springer.
R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Revelle, W. (2009). psych: Procedures for Personality and Psychological Research. R package version 1.0-67.

Venables, W., Smith, D. M., and the R development core team (2008). An Introduction to R Notes on R: A Programming Environment for Data Analysis and Graphics. R core team, version 2.8.1 edition.

Wilkinson, L. The grammar of graphics. Springer, 2nd edition.

[^0]: ${ }^{1}$ Free as in speech rather than as in beer. See http://www.gnu.org
 ${ }^{2}$ GNU's Not Unix

[^1]: ${ }^{3}$ This is based on the observation that there are >1500 packages and that each package probably has at least 6 functions.

