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1 Longitudinal Structural Equation Modeling

1.1 Longitudinal Data Analysis
• longitudinal data analysis is the analysis of change in an outcome (or several

outcomes) over time

• longitudinal data analysis studies the changes within individuals and the fac-
tors that influence change

• longitudinal data is collected in almost every discipline: health, social and
behavioural sciences, biological and agricultural sciences, economics, mar-
keting, . . .

• data is collected in studies using longitudinal designs

• longitudinal data are (by nature) multivariate, and have a complex random-
error structure that must be accounted for in the analysis
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simple dataset with 4 time points

• 12 subjects, each one has 4 scores on the ‘McCarthy Scales of Children’s
Abilities’ (source: Maxwell & Delaney, 2004, Table 11.5)

• 4 time points: 30, 36, 42 and 48 months

> MD11.5 <-
+ read.table("http://www.da.ugent.be/datasets/MaxwellDelaney11.5.dat",
+ header=TRUE)
> MD11.5

age30 age36 age42 age48
1 108 96 110 122
2 103 117 127 133
3 96 107 106 107
4 84 85 92 99
5 118 125 125 116
6 110 107 96 91
7 129 128 123 128
8 90 84 101 113
9 84 104 100 88
10 96 100 103 105
11 105 114 105 112
12 113 117 132 130
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data characteristics: the mean structure

• the observed (within-subjects) cell means:
> colMeans(MD11.5)

age30 age36 age42 age48
103 107 110 112

• we can consider the 4 time points as the 4 levels of a within-subjects factor
‘A’

– typical research question: is there a (significant) difference between
the four time points (on average)?

• or we can consider ‘time’ (in months) as a continuous variable, with four
observed values (30, 36, 42 and 48 months)

– typical research question: is there a (significant) linear/quadratic/. . . effect
of ‘time’?

• and last but not least: what about individual differences? do all subjects
follow the same pattern?
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data characteristics: the covariance structure

• often, the focus of the analysis is on the means; however, we should also
take into account the (complex) correlation structure of the data

> round(cor(MD11.5), 2)

age30 age36 age42 age48
age30 1.00 0.79 0.70 0.60
age36 0.79 1.00 0.76 0.47
age42 0.70 0.76 1.00 0.85
age48 0.60 0.47 0.85 1.00

• the variances are important too, so in practice, we need to model the variance-
covariance matrix:

> round(cov(MD11.5), 1)

age30 age36 age42 age48
age30 188.0 154.4 127.4 121.2
age36 154.4 200.5 143.6 97.5
age42 127.4 143.6 178.0 168.1
age48 121.2 97.5 168.1 218.0
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data characteristics: the covariance structure (2)

• typical research questions related to variances/covariances:

– do the variances change over time?

– can we detect a particular structure/pattern in the covariance structure?

• modeling the covariances in an adequate way is an important component of
longitudinal data analysis

plotting the data

• learn how to plot your data: both average trends, individual trends, . . .

• you may need to ‘reshape’ your data (from wide to long format, or from long
to wide format)
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reshape data from ‘wide’ to ‘long’ format + plot
> library(reshape)
> MD11.5$subject <- factor(paste("subject",1:nrow(MD11.5),sep=""))
> MD11.5.long <- melt(MD11.5, id.var="subject", variable_name="A")
> MD11.5.long$age <- as.numeric(MD11.5.long$A) - 1
> names(MD11.5.long)[3] <- "y"
> head(MD11.5.long)

subject A y age
1 subject1 age30 108 0
2 subject2 age30 103 0
3 subject3 age30 96 0
4 subject4 age30 84 0
5 subject5 age30 118 0
6 subject6 age30 110 0

> library(lattice)
> p1 <- xyplot(y ˜ A, groups=subject, data=MD11.5.long, type=c("l","g"))
> p2 <- xyplot(y ˜ A, data=MD11.5.long, type=c("a","g"))

> print(p1, split=c(1,1,1,2), more=TRUE); print(p2, split=c(1,2,1,2))
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classic analysis: paired t-test

• Student’s (1908) paired t-test

• only two time-points (say, age30 and age36)

• we treat ‘age’ as categorical

• R code:

> t.test(MD11.5$age30, MD11.5$age36, paired=TRUE)

Paired t-test

data: MD11.5$age30 and MD11.5$age36
t = -1.551, df = 11, p-value = 0.1492
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-9.676458 1.676458

sample estimates:
mean of the differences

-4

Yves Rosseel Longitudinal Structural Equation Modeling 10 / 84



Department of Data Analysis Ghent University

classic analysis: repeated measures ANOVA

• one of the earliest statistical methods for the analysis of change

• based on the analysis of variance (ANOVA) paradigm, as originally devel-
oped by R. A. Fisher

• the mixed-effects ANOVA model (random intercept only):

Yij =X
′
ijβ + bi + eij , i = 1, . . . , N, j = 1, . . . , J

– N is the number of observations; J is the number of repeated measures

– Xij is the design matrix; β a vector of regression parameters

– bi is a random intercept; bi ∼ N(0, σ2
b )

– eij ∼ N(0, σ2
e)

• the implied ‘compound symmetry’ structure for the covariance (of the re-
peated measures within an observation) is very restrictive

Yves Rosseel Longitudinal Structural Equation Modeling 11 / 84



Department of Data Analysis Ghent University

• R code:

> fit <- aov(y ˜ A + Error(subject), data=MD11.5.long)
> summary(fit)

Error: subject
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 6624 602.2

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

A 3 552 184.00 3.027 0.0432 *
Residuals 33 2006 60.79
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• corrections (to the degrees of freedom of the F -test) have been proposed by
Greenhouse & Geisser (1959) and Huynh & Feldt (1976)

– F (1.83, 20.12) = 3.027, p = 0.075 (Greenhouse & Geisser)

– F (2.18, 23.94) = 3.027, p = 0.063 (Huynh & Feldt)
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sidenote: compound symmetry

• a covariance-matrix has a ‘compound symmetry’ structure if

1. all variances are equal: Var(Yl) = Var(Ym) for every pair (l,m)

2. all covariances are equal: Cov(Yl, Ym) = ρ for every pair l 6= m

• example:

> C <- matrix(2, ncol=4, nrow=4)
> diag(C) <- 10
> C

[,1] [,2] [,3] [,4]
[1,] 10 2 2 2
[2,] 2 10 2 2
[3,] 2 2 10 2
[4,] 2 2 2 10
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classic analysis: repeated measures MANOVA

• different tradition: repeated measures MANOVA (Box, 1950; Geisser, 1963;
Potthof & Roy, 1964)

• based on the multivariate linear model:

Yi = X′
iβ + ei

• error covariance (of the repeated measures) is ‘unstructured’ (all elements
are freely estimated)

• multivariate tests (Wilks’ lambda)

• no random effects

• the original response vector is linearly transformed into a ‘difference’ vec-
tor, reflecting the fact that we are interested in the differences among the
responses; different types of transformations are possible
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• R code:

> d12 <- c(1,-1,0,0)
> d23 <- c(0,1,-1,0)
> d34 <- c(0,0,1,-1)
> M <- cbind(d12,d23,d34)
> M

d12 d23 d34
[1,] 1 0 0
[2,] -1 1 0
[3,] 0 -1 1
[4,] 0 0 -1

> fit <- lm( cbind(age30, age36, age42, age48) %*% M ˜ 1, data=MD11.5)
> anova(fit, test="Wilks")

Analysis of Variance Table

Df Wilks approx F num Df den Df Pr(>F)
(Intercept) 1 0.57251 2.2401 3 9 0.1528
Residuals 11
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limitations of the classic approaches

• issues with repeated measures ANOVA:

– correlations among repeated measurement often decay with increasing
separation in time

– the assumption of constant variance across time is often unrealistic

– complete data only (no missing values)

• issues with repeated measures MANOVA:

– balanced data only (everyone is measured at the same time points)

– complete data only (no missing values)

– no time-varying covariates

• time is treated as an (unordered) categorical variable

Yves Rosseel Longitudinal Structural Equation Modeling 16 / 84



Department of Data Analysis Ghent University

the linear mixed model

• the linear mixed model (Laird-ware notation):

yi = Xiβ + Zibi + εi i = 1, 2, . . . , N

• more flexibility in the covariance structure for εi

• no restrictions on the design matrices (Xi and Zi)

• efficient estimation using likelihood-based models (ML and REML)

• can handle unbalanced data, missing data, time-varying covariates, time-
invariant covariates

• outside the SEM world, this is the golden standard

• special case: growth curve models (Wishart 1938, Box 1950, Potthof & Roy,
1964)

• can be generalized to account for non-Gaussian responses
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• R code:
> library(lme4)
> fit.lmer <- lmer(y ˜ 1 + age + (1 + age | subject), data=MD11.5.long)
> summary(fit.lmer)

Linear mixed model fit by REML ['lmerMod']
Formula: y ˜ 1 + age + (1 + age | subject)

Data: MD11.5.long

REML criterion at convergence: 345.5595

Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 169.85 13.033

age 14.53 3.812 -0.41
Residual 34.82 5.901

Number of obs: 48, groups: subject, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) 103.500 4.023 25.726
age 3.000 1.338 2.241

Correlation of Fixed Effects:
(Intr)

age -0.475
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1.2 The SEM approach to longitudinal data analysis
• long history, mostly for ‘balanced data’: same number of time points for

each observation

– repeated measures models
– panel models, simplex models, autoregressive models
– growth curve models (random coefficient models)
– hybrid models (growth curve + autoregressive)
– latent-state, latent-trait models
– latent difference scores models
– . . .

• multilevel SEM

– combines ‘mixed models’ with path analysis and latent variables
– allows for unbalanced data
– relatively new, active research; major software package: Mplus
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1.3 Repeated measures models (using SEM)
• how do the means change over time (on average)

• we treat ‘time’ as a categorical variable with t levels

• SEM version of repeated measures ANOVA

• but much more flexible:

– the (error) covariance structure is not restricted to compound symmetry

– we can use latent variables (instead of observed variables), and study
the differences between latent means

• if we use latent variables, we first need to establish measurement invariance
across time
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the naive approach

• what is wrong with this approach?
> library(lavaan)
> model <- '
+ age30 ˜ i1*1
+ age36 ˜ i2*1
+ age42 ˜ i3*1
+ age48 ˜ i4*1
+
+ age30 ˜˜ v1*age30
+ age36 ˜˜ v2*age36
+ age42 ˜˜ v3*age42
+ age48 ˜˜ v4*age48
+ '
> fit <- lavaan(model, data = MD11.5)
> lavTestWald(fit, constraints = 'i1 == i2; i2 == i3; i3 == i4')

$stat
[1] 3.058521

$df
[1] 3

$p.value
[1] 0.3826902
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adding correlated residuals

• we allow the residuals to be correlated:

> model <- '
+ age30 ˜ i1*1; age36 ˜ i2*1; age42 ˜ i3*1; age48 ˜ i4*1
+
+ age30 ˜˜ v1*age30
+ age36 ˜˜ v2*age36
+ age42 ˜˜ v3*age42
+ age48 ˜˜ v4*age48
+
+ age30 ˜˜ age36 + age42 + age48
+ age36 ˜˜ age42 + age48
+ age42 ˜˜ age48
+ '
> fit <- lavaan(model, data = MD11.5)
> lavTestWald(fit, constraints = 'i1 == i2; i2 == i3; i3 == i4')

$stat
[1] 8.960391

$df
[1] 3

$p.value
[1] 0.02982217
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alternative test: LRT

• specify a null model with equal intercepts/means

> model.equal <- '
+ age30 ˜ i1*1; age36 ˜ i1*1; age42 ˜ i1*1; age48 ˜ i1*1
+
+ age30 ˜˜ v1*age30
+ age36 ˜˜ v2*age36
+ age42 ˜˜ v3*age42
+ age48 ˜˜ v4*age48
+
+ age30 ˜˜ age36 + age42 + age48
+ age36 ˜˜ age42 + age48
+ age42 ˜˜ age48
+ '
> fit.equal <- lavaan(model.equal, data = MD11.5)
> anova(fit, fit.equal)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit 0 367.65 374.44 0.0000
fit.equal 3 368.34 373.68 6.6927 6.6927 3 0.08236 .
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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compound symmetry

• the classical repeated measures ANOVA implies a compound symmetry struc-
ture for the residuals:

> model <- '
+ age30 ˜ i1*1; age36 ˜ i2*1; age42 ˜ i3*1; age48 ˜ i4*1
+
+ age30 ˜˜ v1*age30
+ age36 ˜˜ v1*age36
+ age42 ˜˜ v1*age42
+ age48 ˜˜ v1*age48
+
+ age30 ˜˜ c*age36 + c*age42 + c*age48
+ age36 ˜˜ c*age42 + c*age48
+ age42 ˜˜ c*age48
+ '
> fit <- lavaan(model, data = MD11.5)
> summary(fit)

lavaan (0.5-17.700) converged normally after 21 iterations

Number of observations 12

Estimator ML
Minimum Function Test Statistic 17.066
Degrees of freedom 8
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P-value (Chi-square) 0.029

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|)
Covariances:
age30 ˜˜
age36 (c) 124.069 56.434 2.198 0.028
age42 (c) 124.069 56.434 2.198 0.028
age48 (c) 124.069 56.434 2.198 0.028

age36 ˜˜
age42 (c) 124.069 56.434 2.198 0.028
age48 (c) 124.069 56.434 2.198 0.028

age42 ˜˜
age48 (c) 124.069 56.434 2.198 0.028

Intercepts:
age30 (i1) 103.000 3.871 26.610 0.000
age36 (i2) 107.000 3.871 27.643 0.000
age42 (i3) 110.000 3.871 28.418 0.000
age48 (i4) 112.000 3.871 28.935 0.000

Variances:
age30 (v1) 179.792 57.193
age36 (v1) 179.792 57.193
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age42 (v1) 179.792 57.193
age48 (v1) 179.792 57.193

> model.equal <- '
+ age30 ˜ i1*1; age36 ˜ i1*1; age42 ˜ i1*1; age48 ˜ i1*1
+
+ age30 ˜˜ v1*age30
+ age36 ˜˜ v1*age36
+ age42 ˜˜ v1*age42
+ age48 ˜˜ v1*age48
+
+ age30 ˜˜ c*age36 + c*age42 + c*age48
+ age36 ˜˜ c*age42 + c*age48
+ age42 ˜˜ c*age48
+ '
> fit.equal <- lavaan(model.equal, data = MD11.5)
> anova(fit, fit.equal)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit 8 368.71 371.62 17.066
fit.equal 11 371.47 372.92 25.817 8.751 3 0.03279 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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• compare this to:

> fit.aov <- aov(y ˜ 1 + A + Error(subject), data=MD11.5.long)
> summary(fit.aov)

Error: subject
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 6624 602.2

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

A 3 552 184.00 3.027 0.0432 *
Residuals 33 2006 60.79
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• here we get an F-statistic, while lavaan is using a chi-square statistic
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alternative parameterization, using random intercept

• instead of specifying the compound symmetry structure directly, we can pos-
tulate a random effect (random intercept)

• this is the ‘growth curve’ approach

> model.A <- '
+ int =˜ 1*age30 + 1*age36 + 1*age42 + 1*age48
+
+ # intercepts (fixed effects)
+ int ˜ 0
+ age30 ˜ i1*1
+ age36 ˜ i2*1
+ age42 ˜ i3*1
+ age48 ˜ i4*1
+
+ # random intercept
+ int ˜˜ int
+
+ # force same variance for all (compound symmetry)
+ age30 ˜˜ v1*age30
+ age36 ˜˜ v1*age36
+ age42 ˜˜ v1*age42
+ age48 ˜˜ v1*age48
+ '
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> fit.A <- lavaan(model.A, data=MD11.5)
> summary(fit.A, standardized = TRUE)

lavaan (0.5-17.700) converged normally after 21 iterations

Number of observations 12

Estimator ML
Minimum Function Test Statistic 17.066
Degrees of freedom 8
P-value (Chi-square) 0.029

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|) Std.lv Std.all
Latent variables:
int =˜
age30 1.000 11.139 0.831
age36 1.000 11.139 0.831
age42 1.000 11.139 0.831
age48 1.000 11.139 0.831

Intercepts:
int 0.000 0.000 0.000
age30 (i1) 103.000 3.871 26.610 0.000 103.000 7.682
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age36 (i2) 107.000 3.871 27.643 0.000 107.000 7.980
age42 (i3) 110.000 3.871 28.418 0.000 110.000 8.204
age48 (i4) 112.000 3.871 28.935 0.000 112.000 8.353

Variances:
int 124.069 56.434 1.000 1.000
age30 (v1) 55.722 13.134 55.722 0.310
age36 (v1) 55.722 13.134 55.722 0.310
age42 (v1) 55.722 13.134 55.722 0.310
age48 (v1) 55.722 13.134 55.722 0.310

> fitted(fit)$cov

age30 age36 age42 age48
age30 179.792
age36 124.069 179.792
age42 124.069 124.069 179.792
age48 124.069 124.069 124.069 179.792
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repeated measures ANOVA in SEM

• we can mimic the classical repeated measures ANOVA in a SEM framework

• using two time-points only, this is the SEM equivalent of the paired t-test

• but we can relax the compound symmetry restriction

– we can allow for an unstructured covariance structure

– or we could impose an autoregressive AR(1) structure

– . . .

• but above all, we can replace the observed variables by latent variables
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repeated measures using latent variables

• example with 2 time points:

y11 y21 y31 y12 y22 y32

ε11 ε21 ε31 ε12 ε22 ε32

f1 f2

time 1 time 2
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comments

• first of all, we need to establish measurement invariance across time points

– it is tempting to do this using a multiple group analysis, using the time
points as group levels, but this will not allow us to specify correlated
residuals among the corresponding variables (and the time points are
not independent)

– therefore, we need to use labels for the different time points (for factor
loadings and intercepts of observed variables), and impose the equality
constraints by using the same label for the different time points

• since we wish to compare the latent means, we need ‘strong invariance’:

– equal factor loadings

– equal intercepts/means of the observed variables

• usually, we allow the residuals variances of the corresponding variables
across time to be correlated
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• if we have more than two time points, we can allow for all possible correla-
tions among the repeated latent variables (this corresponds to the ‘unstruc-
tured’ assumption)

• the latent mean/intercept of the first time point is fixed to zero, while we esti-
mate the latent mean/intercept of the other time points (although alternative
coding schemes are possible)
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example

• example from Todd Little’s book (Longitudinal SEM, 2013): table 3.8 and
figure 3.10 (but with equality constraints)

• the latent variable ‘positive affect’ is measured by three indicators (Glad,
Cheerful and Happy): 823 children in grades 7 en 8 responded to questions
like “In the past 2 weeks, I have felt . . . ” (with 4 response categories: almost
never, seldom, often, almost always)

• measured at two time points: in the fall of two successive school years

• main question: is there a significant difference in (self-reported) ‘positive
affect’ between the two time points?

• this is the SEM equivalent of the paired t-test
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R code: reading in the sample statistics
> MEAN <- c(3.06893, 2.92590, 3.11013, 3.02577, 2.85656, 3.09346)
> SDS <- c(0.84194, 0.88934, 0.83470, 0.84081, 0.90864, 0.83984)
> lower <- '
+ 1.00000
+ 0.55226 1.00000
+ 0.56256 0.60307 1.00000
+ 0.31889 0.35898 0.27757 1.00000
+ 0.24363 0.35798 0.31889 0.56014 1.00000
+ 0.32217 0.36385 0.32072 0.56164 0.59738 1.00000 '
> COV <- getCov(lower, sds=SDS, names = c("Glad1", "Cheer1", "Happy1",
+ "Glad2", "Cheer2", "Happy2"))
> COV

Glad1 Cheer1 Happy1 Glad2 Cheer2 Happy2
Glad1 0.7088630 0.4135162 0.3953488 0.2257459 0.1863819 0.2278048
Cheer1 0.4135162 0.7909256 0.4476782 0.2684330 0.2892800 0.2717608
Happy1 0.3953488 0.4476782 0.6967241 0.1948053 0.2418595 0.2248294
Glad2 0.2257459 0.2684330 0.1948053 0.7069615 0.4279434 0.3965998
Cheer2 0.1863819 0.2892800 0.2418595 0.4279434 0.8256266 0.4558680
Happy2 0.2278048 0.2717608 0.2248294 0.3965998 0.4558680 0.7053312
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R code: setting up a longitudinal CFA
> model <- '
+ posAffect1 =˜ 1*Glad1 + ch*Cheer1 + ha*Happy1
+ posAffect2 =˜ 1*Glad2 + ch*Cheer2 + ha*Happy2
+
+ # intercepts
+ Glad1 ˜ igl*1
+ Glad2 ˜ igl*1
+ Cheer1 ˜ ich*1
+ Cheer2 ˜ ich*1
+ Happy1 ˜ iha*1
+ Happy2 ˜ iha*1
+
+ # residual covariances
+ Glad1 ˜˜ Glad2
+ Cheer1 ˜˜ Cheer2
+ Happy1 ˜˜ Happy2
+
+ # latent means
+ posAffect1 ˜ 0*1 # baseline
+ posAffect2 ˜ 1 # difference compared to baseline
+ '
> fit <- cfa(model, sample.cov = COV,
+ sample.mean = MEAN,
+ sample.nobs = 823)
> summary(fit, fit.measures = TRUE, standardized = TRUE)
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lavaan (0.5-17.700) converged normally after 36 iterations

Number of observations 823

Estimator ML
Minimum Function Test Statistic 20.279
Degrees of freedom 9
P-value (Chi-square) 0.016

Model test baseline model:

Minimum Function Test Statistic 1761.666
Degrees of freedom 15
P-value 0.000

User model versus baseline model:

Comparative Fit Index (CFI) 0.994
Tucker-Lewis Index (TLI) 0.989

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -5381.011
Loglikelihood unrestricted model (H1) -5370.871

Number of free parameters 18
Akaike (AIC) 10798.022
Bayesian (BIC) 10882.855
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Sample-size adjusted Bayesian (BIC) 10825.694

Root Mean Square Error of Approximation:

RMSEA 0.039
90 Percent Confidence Interval 0.016 0.062
P-value RMSEA <= 0.05 0.763

Standardized Root Mean Square Residual:

SRMR 0.019

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|) Std.lv Std.all
Latent variables:
posAffect1 =˜
Glad1 1.000 0.603 0.715
Cheer1 (ch) 1.150 0.046 25.063 0.000 0.693 0.780
Happy1 (ha) 1.076 0.043 25.208 0.000 0.648 0.777

posAffect2 =˜
Glad2 1.000 0.607 0.723
Cheer2 (ch) 1.150 0.046 25.063 0.000 0.698 0.768
Happy2 (ha) 1.076 0.043 25.208 0.000 0.653 0.780
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Covariances:
Glad1 ˜˜

Glad2 0.032 0.015 2.074 0.038 0.032 0.092
Cheer1 ˜˜
Cheer2 0.017 0.016 1.047 0.295 0.017 0.053

Happy1 ˜˜
Happy2 -0.011 0.014 -0.800 0.424 -0.011 -0.041

posAffect1 ˜˜
posAffect2 0.202 0.021 9.840 0.000 0.553 0.553

Intercepts:
Glad1 (igl) 3.067 0.027 114.088 0.000 3.067 3.639
Glad2 (igl) 3.067 0.027 114.088 0.000 3.067 3.652
Cheer1 (ich) 2.915 0.029 99.814 0.000 2.915 3.283
Cheer2 (ich) 2.915 0.029 99.814 0.000 2.915 3.204
Happy1 (iha) 3.123 0.027 115.351 0.000 3.123 3.740
Happy2 (iha) 3.123 0.027 115.351 0.000 3.123 3.726
psAffc1 0.000 0.000 0.000
psAffc2 -0.040 0.025 -1.617 0.106 -0.066 -0.066

Variances:
Glad1 0.347 0.022 0.347 0.489
Cheer1 0.308 0.024 0.308 0.391
Happy1 0.277 0.021 0.277 0.397
Glad2 0.336 0.022 0.336 0.477
Cheer2 0.340 0.025 0.340 0.411
Happy2 0.275 0.021 0.275 0.392
posAffect1 0.363 0.029 1.000 1.000
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posAffect2 0.369 0.030 1.000 1.000

• answer: there is NO significant difference between the two time points
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1.4 Panel models for longitudinal data
• panel models postulate directional (regression) relationships among the re-

peated measures

• the ‘covariance’ is replaced by a ‘regression’

• both within repeated variables (autoregressive) and between repeated vari-
ables (cross-lagged)

• focus on the model-implied covariance/correlation structure

• the means are usually ignored

• some subtypes:

– autoregressive models (the simplex model)

– cross-lagged models

– latent autoregressive/cross-lagged models

– . . .
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example panel model with a single latent variable

• example with 2 time points:

y11 y21 y31 y12 y22 y32

ε11 ε21 ε31 ε12 ε22 ε32

f1 f2

time 1 time 2
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autoregressive models

• each time point is regressed on a previous time point (first order) , or an even
further time point (second order, third order, . . . )

• alternative names: Markov models, simplex models, panel models, . . .

• earliest development dates back to the seminal work of Guttman (1954)

• example first-order univariate autoregressive model:

y1 y2 y3 y4

ε2 ε3 ε4

? ? ?
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The simplex change process

• basic assumption: if individuals are changing at a steady rate, the pattern of
correlations from one time point to the next should follow a simplex pattern

• key characteristic of a simplex pattern: correlations decrease in magnitude
as a function of distance from the diagonal of the correlation matrix

• example of a ‘Guttman simplex pattern’ (correlation = 0.9):

y1 y2 y3 y4
y1 1.000
y2 0.900 1.000
y3 0.810 0.900 1.000
y4 0.729 0.810 0.900 1.000

• example of a ‘Guttman simplex pattern’ (correlation = 0.5):

y1 y2 y3 y4
y1 1.000
y2 0.500 1.000
y3 0.250 0.500 1.000
y4 0.125 0.205 0.500 1.000
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• the simplex model assumes that external (eg. environmental or contextual)
influences are minimal, and can be ignored

– typical example in psychology: early cognitive development

– counterexample: social adjustment in school (often strongly influenced
by contextual influences)

• questions we can answer with panel models:

– are the effects (regression coefficients) the same across time points?

* makes more sense if the time span between variables is the same

* if yes, this would suggest that the process does not change over
time

– are the residual variances the same across time points?

* often unrealistic

– do we have correlated residuals? if so, are they the same across time
points?
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example: McCarthy Scales of Children’s Abilities

• a first-order autoregressive model

> library(lavaan)
> model.age <- '
+ # first order
+ age36 ˜ age30
+ age42 ˜ age36
+ age48 ˜ age42
+ '
> fit <- sem(model.age, data = MD11.5, fixed.x = FALSE)
> summary(fit, standardized = TRUE)

lavaan (0.5-17.700) converged normally after 14 iterations

Number of observations 12

Estimator ML
Minimum Function Test Statistic 7.661
Degrees of freedom 3
P-value (Chi-square) 0.054

Parameter estimates:

Information Expected
Standard Errors Standard
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Estimate Std.err Z-value P(>|z|) Std.lv Std.all
Regressions:
age36 ˜
age30 0.821 0.181 4.540 0.000 0.821 0.795

age42 ˜
age36 0.716 0.177 4.054 0.000 0.716 0.760

age48 ˜
age42 0.944 0.167 5.669 0.000 0.944 0.853

Variances:
age36 67.650 27.618 67.650 0.368
age42 68.863 28.113 68.863 0.422
age48 54.328 22.179 54.328 0.272
age30 172.333 70.355 172.333 1.000

> round(cor(MD11.5[,c("age30","age36","age42","age48")]), 3)

age30 age36 age42 age48
age30 1.000 0.795 0.696 0.599
age36 0.795 1.000 0.760 0.466
age42 0.696 0.760 1.000 0.853
age48 0.599 0.466 0.853 1.000
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extensions

• higher-order models:

– AR(2): T3 is regressed on T2 and T1
– AR(p): T(p+1) is regressed on the p previous time points

• if we interpret a residual as part of the variable at time t that is not explained
by the previous variable(s), we can use this residual as an additional predic-
tor of the next variable:

– without AR(1), this is a first-order moving average model MA(1)

– with AR(1), this is an autoregressive first-order moving average model,
ARMA(1)

– typically effects of the moving averages are invariant over time (Box-
Jenkins time series)
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multivariate panel models

• in a multivariate panel model, we have more than one outcome, measured at
(the same) t time points

• example: a bivariate panel/simplex model where Y is a measure of mathe-
matical achievement, and Z is a measure of reading ability (4 time points:
grade 3, grade 4, grade 5 and grade 6)

y1 y2 y3 y4

z1 z2 z3 z4

ε21 ε31 ε41

ε22 ε32 ε43
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crosslagged effects

• what is the directional effect of one variable on the other?

– do the two variables develop independently of each other?

– or does Y exert a greater influence on Z, or vice versa?

y1 y2 y3 y4

z1 z2 z3 z4

ε21 ε31 ε41

ε22 ε32 ε42
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contemporaneous effects

• sometimes, the crossed effects between two variables are not lagged, but
contemporaneous (exerting an effect at the same time point)

• this can be unidirectional, or reciprocal

• not everyone believes this approach is useful (in addition: often convergence
issues)

y1 y2 y3 y4

z1 z2 z3 z4

ε21 ε31 ε41

ε22 ε32 ε42
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panel model with latent variables

• if the ‘repeated’ outcomes are not directly observable, we may replace them
with a latent variable with a proper measurement model

• but first, we need to establish ‘measurement invariance’ for the latent vari-
ables across time

y1 y2 y3 y4

z1 z2 z3 z4

• in this diagram, the observed indicators have been omitted
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strengths and limitations of panel models

• panel models can be very useful for examining the relations of two (or more)
variables (observed or latent) over time

• often, we are equally interested in the lack of relations over time

• panel models do not tell us anything about group level tendencies (overall
increase or decrease of the scores)

• panel models do not tell us anything about individual tendencies
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1.5 Growth curve models
• ‘time’ is typically considered as a continuous variable

• two components:

– fixed effects: what is the nature of the average trend (linear, quadratic)
– random effects: individual differences

• in addition, we may try to explain these individual differences by taking into
account:

– time-invariant covariates (age, gender, . . . )
– time-varying covariates (measured at each time point)

• closely related to ‘mixed models’ (linear mixed models, generalized mixed
models)

– limited to balanced data
– but we can add indirect paths and latent variables

• focus on the mean structure (not the covariance structure)
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some references

• Bollen, K.A., & Curran, P.J. (2006). Latent curve models: A structural
equation perspective. John Wiley & Sons.

• Duncan, T.E., Duncan, S.C., & Strycker, L.A. (2006). An introduction to
latent variable growth curve modeling: Concepts, issues, and applications.
Routledge Academic.

• Preacher, K.J., Wichman, A.L., MacCallum, R.C., & Briggs, N.E. (2008).
Latent Growth Curve Modeling. Quantitative Applications in the Social Sci-
ences, No. 157, Sage.
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from latent variable to random effect

• a random effect is simply a latent variable with the following properties:

– the repeated measures are the indicators of the latent variable

– the factor loadings are fixed to a specific pattern

– the intercepts of the observed repeated measures are fixed to zero

– the mean/intercept of the latent variable is freely estimated

– the (residual) variance of the latent variable is freely estimated

• typical patterns for the factor loadings:

– by fixing all factor loadings to unity, we obtain a random intercept

– by fixing all factor loadings to a linear scale (eg. 0, 1, 2, 3, . . . ) we
obtain a random slope

– by fixing all factor loadings to a quadratic scale (eg. 0, 1, 4, 9, . . . ), we
obtain a random quadratic effect

– . . .
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random intercept

• creating a random intercept:

y1 y2 y3 y4 y5

ε1 ε2 ε3 ε4 ε5

intercept

1 1 1 1 1
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random intercept only, positive linear trend

• a random-intercept-only model assumes that all individuals follow the same
trend, but with a different initial point (intercept)
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R code

• when using the sem() or cfa() fitting functions, you need to manually set
the intercepts of the observed repeated variables to zero, and free the latent
intercept:

> model <- '
+ # random intercept
+ int =˜ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
+
+ # zero intercepts
+ y1 + y2 + y3 + y4 + y5 ˜ 0*1
+
+ # free latent intercept
+ int ˜ 1
+ '

• the growth() fitting function does this automatically (for all latent variables):

> model <- '
+ # random intercept
+ int =˜ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
+ '
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• when both ‘regular’ latent variables, and ‘random effects’ are used in the
same model, it is perhaps better to use the lavaan() function:

> model <- '
+ # random intercept
+ int =˜ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
+
+ # free latent intercept and variance
+ int ˜ 1
+ int ˜˜ int
+
+ # add residual variances
+ y1 ˜˜ y1; y2 ˜˜ y2; y3 ˜˜ y3; y4 ˜˜ y4; y5 ˜˜ y5
+ '
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random slope

• creating a random slope:

y1 y2 y3 y4 y5

ε1 ε2 ε3 ε4 ε5

intercept

0 1 2 3 4

• here, the ‘reference’ point is the first time point; another coding scheme (-4,
-3, -2, -1, 0) treats the last time point as the reference point

• this will not affect model fit, but it will change the interpretation of the pa-
rameters
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random intercept and random slope

• different intercepts, different slopes
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a typical growth curve model

• random intercept and random slope

y1 y2 y3 y4 y5

ε1 ε2 ε3 ε4 ε5

i s

1 1 1 1 1

0 1 2 3 4

• yt = (initial time at time 1) + (growth per unit time)*time + error

• yt = intercept + slope*time + error
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example: McCarthy Scales of Children’s Abilities

• random intercept, but fixed slope

> model.int <- '
+ int =˜ 1*age30 + 1*age36 + 1*age42 + 1*age48
+ slope =˜ 0*age30 + 1*age36 + 2*age42 + 3*age48
+
+ # intercepts (fixed effects)
+ int ˜ 1
+ slope ˜ 1
+
+ # random intercept
+ int ˜˜ int
+
+ # fixed slope
+ slope ˜˜ 0*slope # no variance
+ int ˜˜ 0*slope # no covariance
+
+ # force same variance for all (compound symmetry)
+ age30 ˜˜ v1*age30
+ age36 ˜˜ v1*age36
+ age42 ˜˜ v1*age42
+ age48 ˜˜ v1*age48
+ '
> fit.int <- lavaan(model.int, data=MD11.5)
> summary(fit.int)
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lavaan (0.5-17.700) converged normally after 56 iterations

Number of observations 12

Estimator ML
Minimum Function Test Statistic 17.280
Degrees of freedom 10
P-value (Chi-square) 0.068

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|)
Latent variables:
int =˜
age30 1.000
age36 1.000
age42 1.000
age48 1.000

slope =˜
age30 0.000
age36 1.000
age42 2.000
age48 3.000

Covariances:
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int ˜˜
slope 0.000

Intercepts:
int 103.500 3.688 28.063 0.000
slope 3.000 0.967 3.104 0.002
age30 0.000
age36 0.000
age42 0.000
age48 0.000

Variances:
int 123.986 56.435
slope 0.000
age30 (v1) 56.056 13.212
age36 (v1) 56.056 13.212
age42 (v1) 56.056 13.212
age48 (v1) 56.056 13.212
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• compare this to the output of lmer():

> fit <- lmer(y ˜ 1 + age + (1 | subject), data=MD11.5.long, REML=FALSE)
> summary(fit)

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: y ˜ 1 + age + (1 | subject)

Data: MD11.5.long

AIC BIC logLik deviance
364.9290 372.4138 -178.4645 356.9290

Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 123.99 11.135
Residual 56.06 7.487

Number of obs: 48, groups: subject, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) 103.5000 3.6881 28.063
age 3.0000 0.9666 3.104

Correlation of Fixed Effects:
(Intr)

age -0.393
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plausible values for the random intercepts

• the predict() function computes (estimated) individual values for the latent
variables (here random effects):

> predict(fit.int)

int slope
[1,] 104.398 3
[2,] 114.281 3
[3,] 99.906 3
[4,] 87.328 3
[5,] 115.180 3
[6,] 97.211 3
[7,] 120.571 3
[8,] 93.617 3
[9,] 90.922 3

[10,] 97.211 3
[11,] 104.398 3
[12,] 116.977 3
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• random intercept, random slope

> model.slope <- '
+ int =˜ 1*age30 + 1*age36 + 1*age42 + 1*age48
+ slope =˜ 0*age30 + 1*age36 + 2*age42 + 3*age48
+
+ # intercepts (fixed effects)
+ int ˜ 1
+ slope ˜ 1
+
+ # random intercept, random slope
+ int ˜˜ int
+ slope ˜˜ slope
+ int ˜˜ slope
+
+ # force same variance for all (compound symmetry)
+ age30 ˜˜ v1*age30
+ age36 ˜˜ v1*age36
+ age42 ˜˜ v1*age42
+ age48 ˜˜ v1*age48
+ '
> fit.slope <- lavaan(model.slope, data=MD11.5)
> summary(fit.slope)

lavaan (0.5-17.700) converged normally after 85 iterations

Number of observations 12
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Estimator ML
Minimum Function Test Statistic 12.610
Degrees of freedom 8
P-value (Chi-square) 0.126

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|)
Latent variables:
int =˜
age30 1.000
age36 1.000
age42 1.000
age48 1.000

slope =˜
age30 0.000
age36 1.000
age42 2.000
age48 3.000

Covariances:
int ˜˜
slope -17.682 19.168 -0.922 0.356

Intercepts:
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int 103.500 3.852 26.870 0.000
slope 3.000 1.281 2.341 0.019
age30 0.000
age36 0.000
age42 0.000
age48 0.000

Variances:
int 153.668 73.024
slope 12.743 8.293
age30 (v1) 34.817 10.051
age36 (v1) 34.817 10.051
age42 (v1) 34.817 10.051
age48 (v1) 34.817 10.051

> anova(fit.int, fit.slope)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit.slope 8 364.26 367.17 12.61
fit.int 10 364.93 366.87 17.28 4.6704 2 0.09679 .
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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• compare this to the output of lmer():
> fit <- lmer(y ˜ 1 + age + (1 + age | subject), data=MD11.5.long, REML=FALSE)
> summary(fit)

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: y ˜ 1 + age + (1 + age | subject)

Data: MD11.5.long

AIC BIC logLik deviance
364.2587 375.4859 -176.1293 352.2587

Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 153.67 12.396

age 12.74 3.570 -0.40
Residual 34.82 5.901

Number of obs: 48, groups: subject, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) 103.500 3.852 26.870
age 3.000 1.281 2.341

Correlation of Fixed Effects:
(Intr)

age -0.475
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plausible values for the random intercepts and slopes

• (estimated) individual values for both random effects:

> predict(fit.slope)

int slope
[1,] 101.922 4.684
[2,] 107.922 7.569
[3,] 99.582 3.115
[4,] 84.612 4.356
[5,] 119.082 0.721
[6,] 106.437 -3.360
[7,] 124.863 0.614
[8,] 87.851 6.579
[9,] 92.584 1.527

[10,] 96.980 2.974
[11,] 106.168 1.840
[12,] 113.997 5.382
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comments

• in the previous examples, we forced the residual variances to be equal, but
this was just to mimic the default behavior of the linear mixed model

• in general, it is often better to leave the residual variances free

• a quadratic random effect can be added by simply adding another latent vari-
able with quadratic factor loadings (0, 1, 4, 9); similar for cubic and higher
effects

• the random effects are exogenous (no incoming arrows); we call this the
unconditional growth curve model

• instead of fixing the linear scale (as in 0, 1, 2, 3), we may estimate some of
the factor loading (as in 0, 1, ?, ?): this allows for more flexible shapes (not
necessarily linear)

• custom shapes (i.e. piecewise curves) are also possible
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second example (optional)

• example from Chapter 3 from the book ‘An introduction to latent variable
growth curve modeling’ (Duncan et. al. 2006); sample statistics from table
3.4; model from example 3.4

• repeated measures: alcohol use at three time points (V1, V2, V3)

• possible consequence: problem behaviour

• possible predictor of growth factors: age

• we will model the time trend by a quadratic curve: this is perhaps a bit too
ambitious, since we only have three time points; the price we have to pay is
to fix the residual variances of the repeated measure to zero

• orthogonal coding of the intercept/slope/quadratic components
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Path diagram

v1 v2 v3

ε1 ε2 ε3

i s q

age prob behav
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R code
> lower <- ' 0.481
+ 0.401 0.539
+ 0.168 0.044 0.120
+ 0.311 0.343 0.516 -0.002 '
> COV3.4 <- getCov(x=lower, diag=FALSE,
+ sds=c(7.388, 8.000, 8.043, 0.379, 0.790),
+ names=c("v1","v2","v3","age", "probelmbehav"))
> MEAN3.4 <- c(8.265, 10.084, 10.888, 15.363, 0.026)
> model3.4 <- '
+ int =˜ 0.577*v1 + 0.577*v2 + 0.577*v3
+ linear =˜ (-0.707)*v1 + 0*v2 + 0.707*v3
+ quadratic =˜ 0.408*v1 + (-0.816)*v2 + 0.408*v3
+
+ # random effects: means and variances
+ int ˜ 1; int ˜˜ int
+ linear ˜ 1; linear ˜˜ linear
+ quadratic ˜ 1; quadratic ˜˜ quadratic
+
+ # fix error variances to zero
+ v1 ˜˜ 0*v1
+ v2 ˜˜ 0*v2
+ v3 ˜˜ 0*v3
+
+ # effect of age
+ int + linear + quadratic ˜ age
+ age ˜ 1
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+ age ˜˜ age
+
+ # sequelae of change
+ probelmbehav ˜ 1 + int + linear + quadratic
+ probelmbehav ˜˜ probelmbehav
+
+ # correlated residuals
+ int ˜˜ linear
+ int ˜˜ quadratic
+ linear ˜˜ quadratic
+ '
> fit3.4 <- lavaan(model3.4, sample.cov=COV3.4, sample.mean=MEAN3.4,
+ sample.nobs=358, mimic="EQS")
> summary(fit3.4, standardized=TRUE)

lavaan (0.5-17.700) converged normally after 246 iterations

Number of observations 358

Estimator ML
Minimum Function Test Statistic 2.974
Degrees of freedom 1
P-value (Chi-square) 0.085

Parameter estimates:

Information Expected
Standard Errors Standard
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Estimate Std.err Z-value P(>|z|) Std.lv Std.all
Latent variables:
int =˜
v1 0.577 6.299 0.853
v2 0.577 6.299 0.787
v3 0.577 6.299 0.783

linear =˜
v1 -0.707 -4.231 -0.573
v2 0.000 0.000 0.000
v3 0.707 4.231 0.526

quadratic =˜
v1 0.408 2.176 0.295
v2 -0.816 -4.352 -0.544
v3 0.408 2.176 0.271

Regressions:
int ˜
age 3.900 1.511 2.582 0.010 0.357 0.135

linear ˜
age -0.515 0.835 -0.617 0.537 -0.086 -0.033

quadratic ˜
age 1.619 0.740 2.189 0.029 0.304 0.115

probelmbehav ˜
int 0.035 0.003 10.609 0.000 0.380 0.481
linear 0.023 0.006 3.821 0.000 0.136 0.172
quadratic 0.018 0.007 2.758 0.006 0.098 0.124
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Covariances:
int ˜˜

linear 6.972 3.444 2.024 0.043 0.108 0.108
quadratic -6.614 3.053 -2.166 0.030 -0.115 -0.115

linear ˜˜
quadratic -0.573 1.678 -0.341 0.733 -0.018 -0.018

Intercepts:
int -43.020 23.214 -1.853 0.064 -3.940 -3.940
linear 9.768 12.837 0.761 0.447 1.632 1.632
quadratic -25.291 11.370 -2.224 0.026 -4.742 -4.742
age 15.363 0.020 765.898 0.000 15.363 40.536
probelmbehav -0.596 0.066 -9.091 0.000 -0.596 -0.755
v1 0.000 0.000 0.000
v2 0.000 0.000 0.000
v3 0.000 0.000 0.000

Variances:
int 117.010 8.758 13.360 0.000 0.982 0.982
linear 35.781 2.678 13.360 0.000 0.999 0.999
quadratic 28.072 2.101 13.360 0.000 0.987 0.987
v1 0.000 0.000 0.000
v2 0.000 0.000 0.000
v3 0.000 0.000 0.000
age 0.144 0.011 13.360 0.000 0.144 1.000
probelmbehav 0.449 0.034 13.360 0.000 0.449 0.719
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comments

• in the model, we have not included a direct effect of age on subsequent
problem behavior (hence we have 1 degree of freedom)

• age only affects the constant and the quadratic growth factors

• but all three latent growth factors are significant predictors of problem be-
havior

• the main conclusion of this model was that the effect of ‘age’ on problem
behavior was mediated through its effect on the developmental parameters
(the growth factors); adding a direct effect of age on problem behavior did
not significantly improve the fit
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autoregressive latent trajectory (ALT) models

• Bollen & Curran, in a series of papers (1999, 2000, 2001, 2004) proposed a
hybrid model they called the ‘autoregressive latent trajectory’ (ALT) model;
best reference:

Bollen, K.A., & Curran, P.J. (2004). Autoregressive latent trajec-
tory (ALT) models: a synthesis of two traditions. Sociological
Methods & Research, 32(3), 336-383.

• it is a growth curve model, combined with an autoregressive structure for the
repeated measures

• can be used when there is interest in both continuous underlying trajectories
and time-specific influences across constructs

• the authors described this approach as ‘The Best of Both Worlds’

• nevertheless, the approach has been criticized because the interpretation is
not always clear
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example ALT model

• combination of a growth curve model with a random intercept, a random
slope, and an autoregressive structure for the repeated measures

y1 y2 y3 y4 y5

ε1 ε2 ε3 ε4 ε5

i s

1 1 1 1 1

0 1 2 3 4
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