#modified March 12 to allow for a list of factor solutions "factor.congruence" <- function (x,y=NULL,digits=2) { if(is.null(y)&& is.list(x)) { n <- length(x) for (i in 1:n) { xi <- x[[i]] if(length(class(xi)) > 1) { if(class(xi)[2] =='omega') {xi <- xi\$schmid\$sl xi<- as.matrix(xi[,1:(ncol(xi)-2)])}} if (!is.matrix(xi)) {if(!is.null(xi\$loadings)) {xi <- xi\$loadings} else {xi <- as.matrix(xi)}} if(i==1) {xg <- xi} else {xg <- cbind(xg,xi)} } x <- xg if(is.null(y)) y <- xg } else { if(length(class(x)) > 1) { if(class(x)[2] =='omega') {x <- x\$schmid\$sl x <- as.matrix(x[,1:(ncol(x)-2)])}} if(length(class(y)) > 1) { if(class(y)[2] =='omega') {y <- y\$schmid\$sl y <- as.matrix(y[,1:(ncol(y)-2)])}} if (!is.matrix(x)) {if(!is.null(x\$loadings)) {x <- x\$loadings} else {x <- as.matrix(x)} } if (!is.matrix(y)) {if(!is.null(y\$loadings)) { y <- y\$loadings } else {y <- as.matrix(y)}} } nx<- dim(x)[2] ny<- dim(y)[2] cross<- t(y) %*% x #inner product will have dim of ny * nx sumsx<- sqrt(1/diag(t(x)%*%x)) sumsy<- sqrt(1/diag(t(y)%*%y)) result<- matrix(rep(0,nx*ny),ncol=nx) result<- round(sumsy * (cross * rep(sumsx, each = ny)),digits) return(t(result)) }