
Chapter 3

The problem of scale

Exploratory data analysis is detective work–numerical detective work–or counting detective
work–or graphical detective work. A detective investigating a crime needs both tools and under-
standing. If he has no fingerprint powder, he will fail to find fingerprints on most surfaces. If he
does not understand where the criminal is likely to have put his fingers, he will will not look in
the right places. Equally, the analyst of data needs both tools and understanding (p 1: Tukey
(1977))

As discussed in Chapter 1 the challenge of psychometrics is assign numbers to observations in
a way that best summarizes the underlying constructs. The ways to collect observations are
multiple and can be based upon comparisons of order or of proximity (Chapter 2). But given
a set of observations, how best to describe them? This is a problem not just for observational
but also for experimental psychologists for both approaches are attempting to make inferences
about latent variables in terms of statistics based upon observed variables (Figure 3.1).

For the experimentalist, the problem becomes interpreting the effect of an experimental
manipulation upon some outcome variable (path B in Figure 3.1 in terms of the effect of
manipulation on the latent outcome variable (path b) and the relationship between the latent
and observed outcome variables (path s). For the observationalist, the observed correlation
between the observed Person Variable and Outcome variable (path A) is interpreted as a
function of the relationship between the latent person trait variable and the observed trait
variable (path r), the latent outcome variable and the observed outcome variable (path s),
and most importantly for inference, the relationship between the two latent variables (path
a).

Paths r and s are influenced by the reliability (Chapter 7), the validity (Chapter 9) and
the shape of the functions r and s mapping the latents to the observed variables. The problem
of measurement is a question about the shape of these relationships. But before it is possible
to discuss shape it is necessary to consider the kinds of relationships that are possible. This
requires a consideration of how to assign numbers to the data.

Consider the set of observations organized into a data.frame, s.df, in Table 3.1. Copy this
table into the clipboard, and read the clipboard into the data.frame, s.df.1 A data.frame is
an essential element in R and has many (but not all) the properties of a matrix. Unlike a
matrix, the column entries can be of different data types (strings, logical, integer, or numeric).
Data.frames have dimensions (the number of rows and columns), and a structure. To see the
structure of a data.frame (or any other R object, use the str function.

1 Because θ is read as X., we add the command colnames(s.df)[4] <- "theta" to match the table.
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Fig. 3.1 Both experimental and observational research attempts to make inferences about unobserved
latent variables (traits, states, and outcomes) in terms of the pattern of correlations between observed
and manipulated variables. The uppercase letters (A-F) represent observed correlations, the lower case
letters (a-f) represent the unobserved but inferred relationships. The shape of the mappings from latent
to observed (r, s, t) affect the kinds of inferences that can be made(Adapted from Revelle (2007) )

The read.clipboard function is part of the psych package and makes the default assump-
tion that the first row of the data table has labels for the columns. See ?read.clipboard for
more details on the function.

> s.df <- read.clipboard()

> dim(s.df)
[1] 7 7
> str(s.df)
'data.frame': 7 obs. of 7 variables:
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Table 3.1 Six observations on seven participants

Participant Name Gender θ X Y Z

1 Bob Male 1 12 2 1
2 Debby Female 3 14 6 4
3 Alice Female 7 18 14 64
4 Gina Female 6 17 12 32
5 Eric Male 4 15 8 8
6 Fred Male 5 16 10 16
7 Chuck Male 2 13 4 2

$ Participant: int 1 2 3 4 5 6 7
$ Name : Factor w/ 7 levels "Alice","Bob",..: 2 4 1 7 5 6 3
$ Gender : Factor w/ 2 levels "Female","Male": 2 1 1 1 2 2 2
$ theta : int 1 3 7 6 4 5 2
$ X : int 12 14 18 17 15 16 13
$ Y : num 2 6 14 12 8 10 4
$ Z : int 1 4 64 32 8 16 2

3.1 Four broad classes of scales

The association of numbers with data would seem to be easy but in fact is one of the
most intractable problems in psychology. It would seem that associating a number to a data
point is straight forward and it is (“Alice answered 18 questions correctly, Bob answered
12, Eric 15”) but the inferences associated with these numbers differ depending what these
numbers represent. In the mid-20th century, the assignment of numbers and use of the the
term measurement applied to psychological phenomena led to a acrimonious debate between
physicists and psychologists (Ferguson et al., 1940) that was left unresolved. To the physicists,
measurement is “the assignment of numerals to things so as to represent facts of conventions
about them” (p 340). Although this meaning is clearly what we think of when measuring
mass or distance, it implicitly requires the ability to form ratios. (Something is twice as heavy
as something else, something is three times further away). But the assignment of numbers
to observations in psychology usually does not meet this requirement. In response to the
Ferguson et al. (1940) report, Stevens (1946) proposed what has become the conventional
way of treating numbers in psychology. That is, numbers can be seen as representing nominal ,
ordinal , interval or ratio levels of measurement (Table 3.2). Stevens was responding to the
criticism that psychological scales were meaningless because they were not true measurement.

This controversy over what is a measurement continues to this day with some referring
to the “pathological nature” of psychometrics (Michell, 2000) for ignoring the fundamental
work in measurement theory (Falmagne, 1992; Krantz and Suppes, 1971) associated with
conjoint measurement as advanced by Krantz and Tversky (1971) and others. Falmagne’s
(1992) review is a very nice introduction to the power of measurement theory. Other useful
reviews include the history of measurement Dı́ez (1997) which discusses the important work
of Hölder (1901) in a translation by (Michell and Ernst, 1997).



50 3 The problem of scale

Although foolhardy to summarize volumes of work in a paragraph, a core idea in mea-
surement theory is that a variable may be said to be measured on an interval scale, u, if
particular patterns of comparisons of order are maintained. Consider the dimensions, X and
the operation ≥ on pairs of elements of X. Then (a,b)≥ (c,d) ⇐⇒ u(a)−u(b)≥ u(c)−u(d)
which implies (a,b)≥ (c,d) ⇐⇒ (a,c)≥ (b,d) (Falmagne, 1992). Extending this idea to the
way that variables may be combined and still be said to be measured on the same metric,
is the basis of conjoint measurement theory (Krantz and Tversky, 1971). A fundamental
conclusion is that u is an interval scale of a, b, p, and q, if (a, p)≥ (b, p) ⇐⇒ (a,q)≥ (b,q)
for all p and q. (As is discussed in Chapter 8 it is a violation of this relationship that leads
proponents of the 1PL Rasch model to reject models with more parameters such as the 2PL
or 1PN ).

In psychometrics, some attention has been paid to measurement theory, and indeed the
advantages of item response theory (Chapter 8) compared to classical test theory (Chapter 7)
have been framed in terms of the measurement properties of scales developed with the two
models (but see Cliff (1992) for a concern that not enough attention has been paid). Even
within the IRT approach, the differences between one parameter Rasch models (8.1.1) and
more complicated models are debated in terms of basic measurement properties (Cliff, 1992).

Proponents of measurement theory seem to suggest that unless psychologists use interval
or ratio measures, they are not doing “real” science. But this seems to ignore examples of
how careful observation, combined with theoretical sophistication but with measures no more
complicated than counts and ordinal relationships has led to theories as diverse as evolution
or plate tectonics.

Table 3.2 Four types of scales and their associated statistics (Rossi, 2007; Stevens, 1946) The statistics
listed for a scale are invariant for that type of transformation. The Beaufort wind speed scale is interval
with respect to the velocity of the wind, but only ordinal with respect to the effect of the wind. The
Richter scale of earthquake intensity is a logarithmic scale of the energy released but linear measure
of the deflection on a seismometer. *Note that Stevens lists rank correlations as requiring interval
properties although they are insensitive to monotonic transformations.

Scale Basic operations Transformations Invariant statistic Examples
Nominal equality Permutations Counts Detection

xi = x j Mode Species classification
χ2 and (φ) correlation Taxons

Ordinal order Monotonic Median Mhos Hardness scale
xi > x j (homeomorphic) Percentiles Beaufort Wind (intensity)

x’ =f(x) Spearman correlations* Richter earthquake scale
f is monotonic

Interval differences Linear Mean (µ) Temperature (°F, °C)
(Affine) Standard Deviation (σ) Beaufort Wind (velocity)

(xi− x j) > (xk− xl) x’ = a + bx Pearson correlation (r)
Regression (β)

Ratio ratios Multiplication Coefficient of variation (σ
µ ) Length, mass, time

(Similiarity) Temperature (°K)
xi
x j

> xk
xl

x’ = bx Heating degree days
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3.1.1 Factor levels as Nominal values

Assigning numbers to the “names” column is completely arbitrary, for the names are mere
conveniences to distinguish but not to order the individuals. Numbers could be assigned in
terms of the participant order, or alphabetically, or in some random manner. Such nominal
data uses the number system merely as a way to assign separate identifying labels to each
case. Similarly, the “gender” variable may be assigned numeric values, but these are useful
just to distinguish the two categories. In R, variables with nominal values are considered to be
factors with multiple levels. Level values are assigned to the nominal variables alphabetically
(i.e.,“Alice”, although the 3rd participant, is given a level value of“1”for the“names”variable;
similarly, “Females” are assigned a value of “1” on the “Gender” factor).

The “names” and “gender” columns of the data represents “nominal” data (also known
as categorical or in R representing levels of a factor), Columns theta, x, and z are integer
data, and because of the decimal point appearing in column Y, variable Y is assigned as a
“numeric” variable.

3.1.2 Integers and Reals: Ordinal or Metric values?

If the assignment of numbers to nominal data is arbitrary, what is the meaning of the numbers
for the other columns? What are the types of operations that can be done on these numbers
that allow inferences to be drawn from them? To use more meaningful numbers, can we treat
the Mhos scale of hardness values the same way we treat the Indentation hardness values
(refer back to Table 2.6) or the Beaufort scale ratings with wind velocity (Table 2.7)? To
answer these questions, it is useful to first consider how to summarize a set of numbers in
terms of dispersion and central tendency.

3.2 Graphical and numeric summaries of the data

The question is how to best summarize the data without showing all the cases. John Tukey
invented many ways to explore one’s data, both graphically and numerically Tukey (1977).
One descriptive technique was the five number summary which considered the minimum, the
maximum, the median, and then the 25th and 75th percentiles. (These later two are, of course,
just the median number between the minimum and the median, and between the maximum
and the median). The summary function gives these five numbers plus the arithmetic mean.
For categorical (of Type=Factor) variables, summary provides counts. Notice how it orders
the levels of the factor variables alphabetically.

A graphic representation of the Tukey 5 points is the “BoxPlot” drawn by the boxplot
function (Figure 3.2) which includes two more numbers, the upper and lower“whiskers”, which
are defined as the most extreme numbers that do not exceed 1.5 the InterQuartileRange
(IQR) beyond the upper and lower quartiles. Why, you might ask, 1.5? The IQR is the
distance from the 25th to 75th percentile. If the data are sampled from a normal distribution,
the IQR corresponds to 1.35 z units. And 1.5 times that is 2.02. That is, the whiskers will be
2.7 z score units above and below the mean and median. For a normal, this corresponds to
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Table 3.3 Basic summary statistics from the summary function include Tukey’s “five numbers”.

> s.df <- read.clipboard()
> summary(s.df)
> colnames(s.df)[4] <- "theta"
>boxplot(s.df[,4:7],main="Boxplot of data from Table 3.1")

Participant Name Gender theta X Y Z
Min. :1.0 Alice:1 Female:3 Min. :1.0 Min. :12.0 Min. : 2 Min. : 1.00
1st Qu.:2.5 Bob :1 Male :4 1st Qu.:2.5 1st Qu.:13.5 1st Qu.: 5 1st Qu.: 3.00
Median :4.0 Chuck:1 Median :4.0 Median :15.0 Median : 8 Median : 8.00
Mean :4.0 Debby:1 Mean :4.0 Mean :15.0 Mean : 8 Mean :18.14
3rd Qu.:5.5 Eric :1 3rd Qu.:5.5 3rd Qu.:16.5 3rd Qu.:11 3rd Qu.:24.00
Max. :7.0 Fred :1 Max. :7.0 Max. :18.0 Max. :14 Max. :64.00

Gina :1

roughly the .005 region at each tail, and thus any point beyond the whiskers in either direction
has a .01 chance of occurring. (If the minimum value is less than that distance from the lower
quartile, the whisker ends on the data point, similarly for the upper whisker). Several things
become immediately apparent in this graph: X is much higher than Y (which has more
variability), and z has both greater IQR as well as one very extreme score. Generalizations
of the boxplot are “notched” boxplots which give confidence intervals of the median (use the
“notch” option in boxplot), and “violin” plots which give more graphical representations of
the distributions within the distributions (see vioplot in the vioplot package).

3.2.1 Sorting data as a summary technique

For reasonable size data sets, it is sometimes useful to sort the data according to a meaningful
variable to see if anything leaps out from the data. In this, case, sorting by “name” does not
produce anything meaningful, but sorting by the fourth variable, θ , shows that variables 4-7
are all in the same rank order, a finding that was less than obvious from the original data in
Table 3.1. The concept that “Alabama need not come first” (Ehrenberg, 1977; Wainer, 1978,
1983; Wainer and Thissen, 1981) is a basic rule in table construction and implies that sorting
the data by meaningful variables rather than mere alphabetical or item order will frequently
produce useful findings. Specifying that the new values of the data.frame are to be ordered
by the the rank ordered values of the order function sorts the data frame.

3.3 Numerical estimates of central tendency

Given a set of numbers, what is the single best number to represent the entire set? Unfor-
tunately, although easy to state the question, it is impossible to answer, for the best way
depends upon what is wanted. However, it is possible to say that an unfortunately common
answer, the mode, is perhaps the worst way of estimating the central tendency.
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Boxplot of data from Table 3.1

Fig. 3.2 The Tukey box and whiskers plot shows the minima, maxima, 25th and 75th percentiles, as
well as the “whiskers” (either the lowest or highest observation or the most extreme value which is no
more than 1.5 times the interquartile range from the box.) Note the outlier on the Z variable.

3.3.1 Mode: the most frequent

The mode or modal value represents the most frequently observed data point. This is perhaps
useful for categorical data, but not as useful with ordinal or interval data, for the mode is
particularly sensitive to the way the data are grouped or to the addition of a single new
data point. Consider 100 numbers pseudo randomly generated from 1 to 100 from a uniform
distribution using the runif function. (Alternatively,the sample could have been used to
sample with replacement from a distribution ranging from 1-100). Viewed as real numbers to
10 decimal places, there are no repeats and thus all are equally likely. If we convert them to
integers by rounding (round(x)), table the results, and then sort that table, we find that
the most frequent rounded observation was 39 or 48 which occurred 4 times. (The example
code combines these three commands into one line.) This mode is different when we use the
stem to produce a stem and leaf diagram Tukey (1977) which groups the data by the first
decimal digits. The stem and leaf shows that there were just as many numbers in the 70s
(14) as in the 30s. Breaking the data into 5 chunks instead of 10, leads to the most numbers
being observed between 60 and 80. So, what is the mode?
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Table 3.4 Sometimes, sorting the data shows relationships that are not obvious from the unsorted
data. Two different sorts are shown, the first, sorting alphabetically by name is less useful than the
second, sorting by variable 4. Note that the sort can either be based upon column number or by column
name. Compare this organization to that of Table 3.1.

> n.df <- s.df[order(s.df[,2]),] #create a new data frame, ordered by the 2nd variable of s.df
> s.df <- s.df[order(s.df$theta),] #order the data frame by the fourth variable (theta)
> sn.df <- cbind(n.df,s.df) #combine the two
> sn.df #show them

Participant Name Gender theta X Y Z Participant Name Gender theta X Y Z
3 3 Alice Female 7 18 14 64 1 Bob Male 1 12 2 1
1 1 Bob Male 1 12 2 1 7 Chuck Male 2 13 4 2
7 7 Chuck Male 2 13 4 2 2 Debby Female 3 14 6 4
2 2 Debby Female 3 14 6 4 5 Eric Male 4 15 8 8
5 5 Eric Male 4 15 8 8 6 Fred Male 5 16 10 16
6 6 Fred Male 5 16 10 16 4 Gina Female 6 17 12 32
4 4 Gina Female 6 17 12 32 3 Alice Female 7 18 14 64

> set.seed(1) #to allow for the same solution each time
> x <- runif(100,1,100) #create 100 pseudo random numbers from 1 to 100.
> # x <- sample(100,100,replace=TRUE)

# Alternatively, take 100 samples from the integers 1 to 100
> sort(table(round(x)))
> stem(x)
> stem(x,scale=.5)

2 3 8 9 11 12 15 18 19 22 30 32 33 38 40 49 52 53 56 58 60 61
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
63 69 70 71 76 81 82 83 84 86 89 90 94 95 96 99 7 13 34 41 42 44
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
46 50 66 67 72 73 77 79 80 87 88 91 21 25 27 35 65 78 39 48
2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4
> stem(x)

0 | 237789
1 | 1233589
2 | 1112555777
3 | 0234455589999
4 | 01122446688889
5 | 002368
6 | 01355566779
7 | 01223367788899
8 | 001234677889
9 | 0114569

> stem(x,.5)

The decimal point is 1 digit(s) to the right of the |
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0 | 2377891233589
2 | 11125557770234455589999
4 | 01122446688889002368
6 | 0135556677901223367788899
8 | 0012346778890114569

The mode is a useful summary statistic for categorical data but should not be used to
summarize characteristics of data that have at least ordinal properties.

3.3.2 Median: the middle observation

A very robust statistic of the central tendency is the median or middle number of the ranked
numbers. For an odd numbered set, the median is that number with as many numbers above
it as below it. For an even number of observations, the median is half way between the
two middle values. A robust estimate is one that has the property that slight changes in
the distribution will lead to small changes in the estimate (Wilcox, 2005). The median is
particularly robust in that monotonic changes in the values of all the numbers above it or
below do not affect the median.

Tukey’s 5 number summaries take advantage of the median, and in addition, define the
lower and upper quartiles as the median distance from the median (see summary). The median
subject will not change if the data are transformed with any monotonic transformation, nor
will the median value change if the data are“trimmed”of extreme scores either by deleting the
extreme scores or by converting all scores beyond a certain value to that value “(winsorizing”
the mean, see winsor).

The median is perhaps the best single description of a set of numbers, for it is that char-
acterization that is exactly above 1/2 and exactly below 1/2 of the distribution. Graphically,
it is displayed as a heavy bar on a box plot (Figure 3.2).

Galton (1874) was a great proponent of the median as an estimate of central tendency for
the simple reason that it was easy to find when taking measurements in the field:

Now suppose that I want to get the average height and“probable error”of a crowd [...]. Measuring
them individually is out of the question; but it is not difficult to range them –roughly for the
most part, but more carefully near the middle and one of the quarter points of the series. Then
I pick out two men, and two only–the one as near near the middle as may be, and the other
near the quarter point, and I measure them at leisure. The height of the first man is the average
of the whole series, and the difference between him and the other man gives the probable error
(Galton, 1874, p 343).

In addition to the technique of lining people up by height to quickly find the median
height, Galton (1899) proposed a novel way of using normal theory to estimate both the
median and the interquartile range:

The problem is representative of a large class of much importance to anthropologists in the field,
few of whom appear to be quick at arithmetic or acquainted even with the elements of algebra.
They often desire to ascertain the physical characteristics of [people] who are too timourous
or suspicious to be measured individually, but who could easily be dealt with by my method.
Suppose it to be a question of strength, as measured by lifting power, and that it has been
ascertained that a per cent. of them fail to lift a certain bag A of known weight, and that b per
cent of them fail to lift an even heavier bag B. From these two data, the median strength can be
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determined by the simple method spoken of above, and not only it but also the distribution of
strength among the people.

Unfortunately, when the data are grouped in only a few levels (say 4 or 5 response levels on
a teacher rating scale, or by year in school for college students), the median does not give the
resolution needed for useful descriptions of the data. It is more useful to consider that each
number, x, represents the range from x - .5w to x +.5w, where w is the width of the interval
represented by the number. If there are multiple observations with the same nominal value,
they can be thought of as being uniformly distributed across that range. Thus, given the the
two sets of numbers, x and y, with values ranging from 1 to 5 (Table 3.5) the simple median
(the 17th number in these 33 item sets) is 3 in both cases, but the first “3” represents the
lower range of 2.5-3.5 and the second“3” represents the highest part of the same range. Using
linear interpolation and the interp.median function, the interpolated medians are 2.54 and
3.46 respectively. By comparing the results of the summary and interp.quartiles functions,
the distinction is even clearer. The summary output fails to capture the difference between
these two sets of data as well as does the interpolated quartiles results (See Figure 3.3 for
another way of looking at the data.).Note the use of the order function to rearrange the data
and the print function to specify the precision of the answer.

Table 3.5 Finding the median and other quantiles by interpolation gives more precision. Compare
the 1st, 2nd and 3rd Quartiles from the summary function to those found by the interp.quantiles
function. See Figure 3.3 for another perspective.

> x <- c(1,1,2,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,2)
> y <- c(1,2,3,3,3,3,4,4,4,5,5,1,2,3,3,3,3,4,4,5,5,5,1,5,3,3,3,3,4,4,4,5,5)
> x <- x[order(x)] #sort the data by ascending order to make it clearer
> y <- y[order(y)]
> data.df <- data.frame(x,y)
> summary(data.df)
> print(interp.quartiles(x),digits=3) #use print with digits to make pretty output
> print(interp.quartiles(y),digits=3)

> x
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5

> y
[1] 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5

x y
Min. :1.000 Min. :1.000
1st Qu.:2.000 1st Qu.:3.000
Median :3.000 Median :3.000
Mean :2.485 Mean :3.485
3rd Qu.:3.000 3rd Qu.:4.000
Max. :5.000 Max. :5.000

> print(interp.quartiles(x),digits=3) #use print with digits to make pretty output
[1] 1.50 2.54 3.23
> print(interp.quartiles(y),digits=3)
[1] 2.77 3.46 4.50
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Fig. 3.3 When the data represent just a few response levels (e.g., emotion or personality items, or
years of education), raw medians and quartile statistics fail to capture distinctions in the data. Using
linear interpolation within each response level (interp.quartiles), finer distinctions may be made.
Although both the X and Y data sets have equal medians the data are quite different. See Table 3.5
for the data.

3.3.3 3 forms of the mean

Even though most people think they know what is a mean there are at least three different
forms seen in psychometrics and statistics. One, the arithmetic average is what is most
commonly thought of as the mean.

X̄ = X. = (
N

∑
i=1

Xi)/N (3.1)

Applied to the data set in Table 3.1, the arithmetic means for the last four variables are
(rounded to two decimals):

>round(mean(s.df[,4:7]),2)
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theta X Y Z
4.00 15.00 8.00 18.14

Because the mean is very sensitive to outliers, it is sometimes recommended to “trim” the top
and bottom n%. Trimming the top and bottom 20% of the data in Table 3.1 leads to very
different estimates for one of the variables (Z). Another technique for reducing the effect
of outliers is to find the “Winsorized” mean. This involves sorting the data and replacing
all values less than the nth value with the nth value, and all values greater than the N-th
value with the N-th value (Wilcox, 2005). Several packages have functions to calculate the
Winsorized mean, including winsor in the psych package.

>round(mean(s.df[,4:7],trim=.2),2)
>round(winsor(s.df[,4:7],trim=.2),2)

theta X Y Z
4.0 15.0 8.0 12.4
4.00 15.00 8.00 13.71

Another way to find a mean is the geometric mean which is the nth root of the n products
of Xi:

X̄geometric = N

�
N

∏
i=1

Xi (3.2)

Sometimes, the short function we are looking for is not available in R, but can be created
rather easily. Creating a new function (geometric.mean) and applying it to the data is such
a case:

> geometric.mean <- function(x, na.rm=TRUE) { exp(mean(log(x))) }
> round(geometric.mean(s.df[4:7]),2)

theta X Y Z
3.38 14.87 6.76 8.00

The third type of mean, the harmonic mean, is the reciprocal of the arithmetic average
of the reciprocals and we can create the function harmonic.mean to calculate it:

X̄harmonic =
N

∑N
i=1 1/Xi

(3.3)

> harmonic.mean <- function(x,na.rm=TRUE) { 1/(mean(1/x)) }
> round(harmonic.mean(s.df[4:7]),2)

harmonic.mean(s.df[,4:7])
theta X Y Z
2.70 14.73 5.40 3.53

The latter two means can be thought of as the anti-transformed arithmetic means of
transformed numbers. That is, just as the harmonic is the reciprocal of the average reciprocal,
so is the geometric mean the exponential of the arithmetic average of the logs of Xi:

X̄geometric = e(∑N
i=1 log(Xi))/N . (3.4)
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The harmonic mean is used in the unweighted means analysis of variance when trying to
find an average sample size. Suppose 80 subjects are allocated to four conditions but for some
reason are allocated unequally to produce samples of size 10, 20, 20, and 30. The harmonic
cell size = 4

1/10+1/20+1/20+1/30 = 4
.2333 = 17.14 rather than the 20/cell if they were distributed

equally. Harmonic means are also used when averaging resistances in electric circuits or the
amount of insulation in a combination of windows.

The geometric mean is used when averaging slopes and is particularly meaningful when
looking at anything that shows geometric or exponential growth. It is equivalent to finding
the arithmetic mean of the log transformed data expressed in the original (un-logged) units.
For distributions that are log normally distributed, the geometric mean is a better indicator
of the central tendency of the distribution than is the arithmetic mean. Unfortunately, if any
of the values are 0, the geometric mean is 0, and the harmonic mean is undefined.

3.3.4 Comparing variables or groups by their central tendency

Returning to the data in Table 3.1, the five estimates of central tendency give strikingly
different estimates of which variable is“on the average greater”(Table 3.6). X has the greatest
median, geometric and harmonic mean, while Z has the greatest arithmetic mean, but not the
greatest trimmed mean. Z is a particularly troublesome variable, with the greatest arithmetic
mean and the next to smallest harmonic mean.

Table 3.6 Six estimates of central tendency applied to the data of Table 3.1. The four variables differ
in their rank orders of size depending upon the way of estimating the central tendency.

theta X Y Z
Median 4.00 15.00 8.00 8.00
Arithmetic 4.00 15.00 8.00 18.14
Trimmed 4.00 15.00 8.00 12.40
Winsorized 4.00 15.00 8.00 13.71
Geometric 3.38 14.87 6.76 8.00
Harmonic 2.70 14.73 5.40 3.53

3.4 The effect of non-linearity on estimates of central tendency

Inferences from observations are typically based on central tendencies of observations. But
the inferences can be affected by not just the underlying differences causing these observa-
tions, but the way these observations are taken. Consider the example of psychophysiological
measures of arousal. Physiological arousal is thought to reflect levels of excitement, alertness
and energy. It may be indexed through measures of the head, the heart, and the hand. Among
the many ways to measure arousal are two psychophysiological indicators of the degree of
palmer sweating. Skin conductance (SC) taken at the palm or the fingers is a direct measure
of the activity of the sweat glands of the hands. It is measured by passing a small current
through two electrodes, one attached to one finger, another attached to another finger. The
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higher the skin conductance, the more aroused a subject is said to be. It is measured in units
of conductance, or mhos. Skin resistance (SR) is also measured by two electrodes, and reflects
the resistance of the skin to passing an electric current. It is measured in units of resistance,
the ohm. The less the resistance, the greater the arousal. These two measures, conductance
and resistance are reciprocal functions of each other.

Consider two experimenters, A and B. They both are interested in the effect of an exciting
movie upon the arousal of their subjects. Experimenter A uses Skin Conductance, experi-
menter B measures Skin Resistance. They first take their measures, and then, after the movie,
take their measures again. The data are shown in Table 3.7. Remember that higher arousal
should be associated with greater skin conductance and lower skin resistance. The means for
the post test indicate a greater conductance and resistance, implying both an increase (as
indexed by skin conductance) and a decrease (as measured by skin resistance)!

How can this be? Graphing the results shows the effect of a non-linear transformation of
the data on the mean (Figure 3.4). The group with the smaller variability (the control group)
has a mean below the straight line connecting the points with the greater variability (the
movie group). The mean conductance and mean resistance for the movie condition is on this
straight line.

Table 3.7 Hypothetical study of arousal using an exciting movie. The post test shows greater arousal
if measured using skin conductance, but less arousal if measured using skin resistance.

Condition Subject Skin Conductance Skin Resistance
Pretest 1 2 .50

2 2 .50
Average 2 .50
Posttest 1 1 1.00

2 4 .25
Average 2.5 .61

3.4.1 Circular Means

An even more drastic transformation of the data that requires yet another way of estimating
central tendency is when the units represent angles and thus can be represented as locations
on a circle. The appropriate central tendency is not the arithmetic mean but rather the
circular mean (Jammalamadaka and Lund, 2006). A typical example in psychology is the
measurement of mood over the day. Energetic arousal, EA, as measured by such self report
items as being alert, wide awake, and not sleepy or tired Rafaeli and Revelle (2006); Thayer
(1989) shows a marked diurnal or circadian rhythm. That is, EA is low but rising in the
morning, peaks sometimes during the early to late afternoon, and then declines at night.
Another example of a phasic rhythm that shows marked individual differences is body tem-
perature Baehr et al. (2000). Consider the hypothetical data in table 3.8 showing the time of
day that each of four scales achieved its maximum for six subjects. (This could be found by
examining the data within each subject for multiple times of day and then finding the maxi-
mum for the scale. A technique for finding the phase angle associated with the maximum will
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Fig. 3.4 The effect of non-linearity and variability on estimates of central tendency. The movie con-
dition increases the variability of the arousal measures. The “real effect” of the movie is to increase
variability which is mistakenly interpreted as an increase/decrease in arousal.

be discussed later (5.4.3). What is the central tendency for each scale? The simple arithmetic
mean suggests that Tense Arousal achieves its maximum at 12 noon and Negative Affect has
an average maximum at 9 am. But examining the data suggests that midnight and 5 am
are better measures of the central tendency. Using mean.circular from the circular package
or circadian.mean from the psych package converts the angles (expressed in radians for
mean.circular or hours for circadian.mean) to two dimensional vectors (representing the
sin and cosine of the angle), finds the averages for each dimension, and then translates the
average vector back into angles. Note how for the sample mood data in table 3.8, the circular
means correctly capture the change in phase angles between the four moods.
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Table 3.8 Hypothetical mood data from six subjects for four mood variables. The values reflect the
time of day that each scale achieves its maximum value for each subject. Each mood variable is just
the previous one shifted by 5 hours. Note how this structure is preserved for the circular mean but not
for the arithmetic mean.

Subject Energetic Arousal Positive Affect Tense Arousal Negative Affect
1 9 14 19 24
2 11 16 21 2
3 13 18 23 4
4 15 20 1 6
5 17 22 3 8
6 19 24 5 10

Arithmetic Mean 14 19 12 9
Circular Mean 14 19 24 5

3.5 Whose mean? The problem of point of view

Even if the arithmetic average is used, finding the central tendency is not as easy as just
adding up the observations and dividing by the total number of observations (Equation 3.1).
For it is important to think about what is being averaged. Incorrectly finding an average can
lead to very serious inferential mistakes. Consider two examples, the first is how long people
are in psychotherapy, the second is what is the average class size in particular department.

3.5.1 Average length of time in psychotherapy

A psychotherapist is asked what is the average length of time that a patient is in therapy.
This seems to be an easy question, for of the 20 patients, 19 have been in therapy for between
6 and 18 months (with a median of 12) and one has just started. Thus, the median client is
in therapy for 52 weeks with an average (in weeks) (1 * 1 + 19 * 52)/20 or 49.4.

However, a more careful analysis examines the case load over a year and discovers that
indeed, 19 patients have a median time in treatment of 52 weeks, but that each week the
therapist is also seeing a new client for just one session. That is, over the year, the therapist
sees 52 patients for 1 week and 19 for a median of 52 weeks. Thus, the median client is in
therapy for 1 week and the average client is in therapy of ( 52 * 1 + 19 * 52 )/(52+19) =
14.6 weeks.

A similar problem of taking cross sectional statistics to estimate long term duration have
been shown in measuring the average length of time people are on welfare (a social worker’s
case load at any one time reflects mainly long term clients, but most clients are on welfare for
only a short period of time). Situations where the participants are self weighted lead to this
problem. The average velocity of tortoises and hares passing by an observer will be weighted
towards the velocity of hares as more of those pass by, even though the overall velocity of
both tortoises and hares is much less.
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3.5.2 Average class size

Consider the problem of a department chairman who wants to recruit faculty by emphasizing
the smallness of class size but also report to a dean how effective the department is at meeting
its teaching requirements. Suppose there are 20 classes taught by a total of five different
faculty members. 12 of the classes are of size 10, 4 of size 20, 2 of 100, one of 200, and one of
400. The median class size from the faculty member point of view is 10, but the mean class
size to report to the dean is 50!

But what seems like a great experience for students, with a median class size of 10, is
actually much larger from the students’ point of view, for 400 of the 1,000 students are in a
class of 400, 200 are in a class of 200, 200 are in classes of 100, and only 80 are in classes of 20,
and 120 are in class sizes of 10. That is, the median class size from the students’ perspective
is 200, with an average class size of (10*120+ 20*80 + 200*100 + 200*200 + 400* 400)/1000
= 222.8.

Table 3.9 Average class size depends upon point of view. For the faculty members, the median of 10
is very appealing. From the Dean’s perspective, the faculty members teach an average of 50 students
per calls.

Faculty Freshman/ Junior Senior Graduate Mean Median
Member Sophmore

A 20 10 10 10 12.5 10
B 20 10 10 10 12.5 10
C 20 10 10 10 12.5 10
D 20 100 10 10 35.0 15
E 200 100 400 10 177.5 150

Total
Mean 56 46 110 10 50.0 39

Median 20 10 10 10 12.5 10

Table 3.10 Class size from the students’ point of view. Most students are in large classes; the median
class size is 200 with a mean of 223.

Class size Number of classes number of students
10 12 120
20 4 80

100 2 200
200 1 200
400 1 400

3.6 Non-linearity and interpretation of experimental effects

Many experiments examining the effects of various manipulations or interventions on subjects
differing in some way are attempts at showing that manipulation X interacts with personality
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dimension Y such that X has a bigger effect upon people with one value of Y than another
(Revelle, 2007; Revelle and Oehleberg, 2008). Unfortunately, without random assignment
of subjects to conditions, preexisting differences between the subjects in combination with
non-linearity of the observed score-latent score relationship can lead to interactions at the
observed score level that do not reflect interactions at the latent score level.

In a brave attempt to measure the effect of a liberal arts education, Winter and McClel-
land developed a new measure said to assess the “the ability to form and articulate complex
concepts and then the use of these concepts in drawing contrasts among examples and in-
stances in the real world” (p 9). Their measure was to have students analyze the differences
between two thematic apperception protocols. Winter and McClelland compared freshman
and senior students at a ”high-quality, high prestige 4 year liberal arts college located in New
England” (referred to as “Ivy College”) with those of “Teachers College”, which was a “4-year
state supported institution, relatively nonselective, and enrolling mostly lower-middle-class
commuter students who are preparing for specific vocations such as teaching”. They also
included students from a “Community College” sample with students similar to those of
“Teachers Colllege”. Taking raw difference scores from freshman year to senior year, they
found much greater improvement for the students at “Ivy College” and concluded that “The
liberal education of Ivy College improved the ability to form and articulate concepts, sharp-
ened the accuracy of concepts, and tended to fuse these two component skills together” (p
15). That is, that the students learned much more at the more prestigious (and expensive)
school Winter and McClelland (1978). While the conclusions of this study are perhaps dear
to all faculty members at such prestigious institutions, they suffer from a serious problem.

Rather than reproducing the data from Winter and McClelland (1978) consider the left
panel of Figure 3.5. The students at “Ivy College” improved more than did their colleagues
at “Teachers College” or the “Junior College. When shown these data, most faculty members
explain them by pointing out that well paid faculty at prestigious institutions are better
teachers. Most students explain these results as differences in ability (the “rich get richer”
hypothesis) or bright students are more able to learn complex material than are less able
students.

However, when given a hypothetical conceptual replication of the study, but involving
mathematics performance, yielding the results shown in the right hand panel of Figure 3.5,
both students and faculty members immediately point out that there is a ceiling effect on
the math performance. That is, the bright students could not show as much change as the
less able students because their scores were too close to the maximum.

What is interesting for psychometricians, of course, is that both panels are generated
from the exact same monotonic curve, but with items of different difficulties. Consider equa-
tion 2.18 which is reproduced here:

prob(correct|θ ,δ ) =
1

1+ eδ−θ . (3.5)

Let the ability parameter, θ , take on different values for the three colleges, (JC = -1, TC =
0, IC = 1), let ability increase 1 unit for every year of schooling, and set the difficulty for the
writing at 4 and for the math at 0. Then equation 3.5 is able to produce both the left panel
(a hard task) or the right panel (an easy task). The appearance of an interaction in both
panels is real, but it is at the observed score level, not at the latent level. For the different
slopes of the lines reflect not an interaction of change in ability as a function of college, for
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Fig. 3.5 The effect of four years of schooling upon writing and mathematics performance. More
selective colleges produce greater change in writing performance than do teacher colleges or junior
colleges, but have a smaller effect on improvement in math performance.

at the latent, θ , level, one year of schooling had an equal effect upon ability (an increase of
1 point) for students at all three colleges and for either the writing or the math test.

This example is important to consider for it reflects an interpretive bias that is all to
easy to have: if the data fit one’s hypothesis (e.g., that smart students learn more), interpret
that result as confirming the hypothesis, but if the results go against the hypothesis (smart
students learn less), interpret the results as an artifact of scaling (in this case, a ceiling effect).
The moral of this example is that when seeing fan-fold interactions such as in Figure 3.5,
do not interpret them as showing an interaction at the latent level unless further evidence
allows one to reject the hypothesis of non-linearity.

Other examples of supposed interactions that could easily be scaling artifacts include
stage models of development (children at a particular stage learn much more than children
below or above that stage; the effect of hippocampal damage on short term versus long
term memory performance, and the interactive effect on vigilance performance of time on
task with the personality dimension of impulsivity. In general, without demonstrating a
linear correspondence between the latent and observed score, main effects (Figure 3.4) and
interactions (Figure 3.5) are open to measurement artifact interpretations (Revelle, 2007).
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3.6.1 Linearity, non-linearity and the properties of measurement

It is these problems in interpretation of mean differences that has been the focus of work on
the fundamentals of measurement (Krantz and Suppes, 1971) and that was the basis of the
controversy in the 1930s (Ferguson et al., 1940). Stevens (1946) proposal to consider four
levels of psychological measures suggested that to compare means it was necessary to have
at least interval levels of measurement and that without such measurement qualities, we are
restricted to comparisons of medians. The problem of interpretation considered in Figure 3.5
does not occur if the discussion is in terms of medians, for in that case, the effect of a year
in schooling is a monotonic increase for all three institutions and there is no possibility of
saying that one group changed more than another group.

Comparisons using scales developed using the Rasch model have been claimed by some
(Bond and Fox, 2007; Borsboom, 2005; Borsboom and Scholten, 2008) to offer the interval
quality of measurement required for the comparisons of means using the principles of conjoint
measurement (Krantz and Tversky, 1971) although others strongly disagree (Kyngdon, 2008;
Michell, 2000, 2004) and yet others remain strongly undecided (Reise and Waller, 2009). The
pragmatic advice is to be very careful about interpreting ordinal interactions or any effect
that can go away with a monotonic transformation and to look for disordinal interactions or
effects that remain even after extreme but monotonic transformations.

3.7 Measures of dispersion

In addition to describing a data set with a measure of central tendency, it is important to
have some idea of the amount of dispersion around that central value.

3.7.1 Measures of range

Perhaps the most obvious measure of dispersion is the range from the highest to the lowest.
Unfortunately, range partly reflects the size of a sample, for as the sample size increases,
the probability of observing at least one rare (extreme) event will increase as well (The
probabiity of the extreme event has not changed, but given more observations, the probability
of observing at least one increases.) This is shown in the left panel of Figure 3.6 for samples
of size 2 to 106. The range (the difference between the maximum and minimum values)
increases dramatically with sample size. One important use of the range is detect data entry
errors. For if the largest possible value should be 9 and an occasional 99 is discovered, it is
likely that a mistake has occurred. Thus, finding the max and min of the data is useful, but
normally just as a way of checking errors.

A more useful measure of range is the interquartile range, that is the range from the 25th
percentile to the 75th percentile. As seen in the right panel of Figure 3.6, the interquartile
range barely varies with sample above about 32. Here the range is expressed in raw score
units. The IQR function can be used to find the interquartile range. For normal data, the IQR
should be the twice the normal score of the 75th percentile = 2 *qnorm(.75) = 1.348980.
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Fig. 3.6 Left hand panel: The minimum and maximum of a sample will generally get further apart
as the sample size increases. Right hand panel: The distance between the 25th and 75th percentile
(the interquartile range) barely changes as sample size increases. Data are taken from random normal
distributions of sample sizes of 2 to 220. Sample size is log transformed.

In that 50% of the observations will be between the lower and upper quartile, Galton
(1888) took 1/2 of the interquartile range as a measure of the probable error . That is, for
any set of numbers with median, M, the interval M - .5 * IQR to M + .5 IQR will include
half of the numbers.

This unit is known by the uncouth and not easily justified names of ‘probable error,’ which I
suppose is intended to express the fact that the number of deviations or ‘Errors’ in the two outer
fourths of the series is the same as those in the middle two fourths; and therefore the probabilty
is equal that an unknown error will fall into either of these two great halves, the outer or the
inner. (Galton, 1908, Chapter XX. Heredity)

3.7.2 Average distance from the central tendency

Given some estimate of the “average” observation (where the average could be the median,
the arithmetic mean, the geometric mean, or the harmonic mean), how far away is the average
participant? Once again, there are multiple ways of answering this question.
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3.7.2.1 Median absolute deviation from the median

When using medians as estimates of central tendencies, it is common to also consider the
median absolute distance from the median mad. That is, median(abs(X-median(X)). The
mad function returns the appropriate value. For consistency with normal data, by default
the mad function is adjusted for the fact that it is systematically smaller than the standard
deviation (see below) by a factor of 1/qnorm(.75). Thus, the default is to return the median
absolute deviation * 1.4826. With this adjustment, if the data are normal, then the mad and
sd function will return almost identical values. If, however, the data are not normal, but
contain some particularly unusual data points (outliers), the mad will be much less than the
sd (see the discussion of robust estimators of dispersion at 3.14).

3.7.2.2 Sums of squares and Euclidean distance

A vector X with n elements can be thought of as a line in n dimensional space. Generalizing
Pythagorus to n dimensions, the length of that line in Euclidean space will be the square
root of the sum of the squared distances along each of the n dimensions (remember that
Pythagorus showed that for two dimensions c2 = a2 +b2 or c =

�
(a2 +b2)).

To find the sums of squares of a vector X we multiply the transpose of the vector (XT )
times the vector (X):

SS = SumSquares =
n

∑
i=1

(X2
i ) = XT X (3.6)

If X is a matrix, then the Sum Squares will be the diagonal of the XT X matrix product.
Letting X be the matrix formed from the last 4 variables from Table 3.1:

> X <- as.matrix(s.df[,4:7])
> SS <- diag(t(X)%*% X)

> X
theta X Y Z

1 1 12 2 1
7 2 13 4 2
2 3 14 6 4
5 4 15 8 8
6 5 16 10 16
4 6 17 12 32
3 7 18 14 64
> SS
theta X Y Z
140 1603 560 5461

3.7.3 Deviation scores and the standard deviation

Rather than considering the raw data (X), it is more common to transform the data by
subtracting the mean from all data points.
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deviationscorei = xi = Xi−X . = Xi−
n

∑
i=1

(Xi)/n (3.7)

Finding the Sums of Squares or length of this vector is done by using equation 3.6, and
for a data matrix, the SS of deviation scores will be xT x. If the SS is scaled by the number
of observations (n) or by the number of observations -1 (n-1), it becomes a Mean Square, or
Variance. The variance is the second moment around the mean:

σ2 =
n

∑
i=1

(x2
i )/(n−1) = xT x/(n−1) (3.8)

Taking the square root of the Variance converts the numbers in the original units and is a
measure of the length of the vector of deviations in n-dimensional space. The term variance
was introduced as the squared standard deviation by William Sealy Gossett publishing under
the name of “Student” (Pearson, 1923).

> X <- as.matrix(s.df[,4:7])
> c.means <- colMeans(X)
> X.mean <- matrix(rep(c.means,7),byrow=TRUE,nrow=7)
> x <- X - X.mean
> SS <- diag(t(x)%*% x)
> x.var <- SS/(dim(x)[1]-1)
> x.sd <- sqrt(x.var)

> SS
theta X Y Z
28.000 28.000 112.000 3156.857

> x.var
theta X Y Z

4.666667 4.666667 18.666667 526.142857
> x.sd

theta X Y Z
2.160247 2.160247 4.320494 22.937804

As would be expected, because the operation of finding the sums of squares of deviations
from the mean is so common, rather than doing the matrix operations shown above, functions
for the standard deviation and the variance are basic functions in R. sd returns the standard
deviation of a vector or each column of a data frame, var returns the variance and covariances
of each column of a data frame or of a matrix.

Deviation scores are in the same units as the original variables, but sum to zero.

3.7.4 Coefficient of variation

Particularly when using values that have the appearance of ratio measurement (e.g., dollars,
reaction times, micro liters of a biological assay) an index of how much variation there is
compared to the mean level is the coefficient of variation. This is simply the ratio of the
standard deviation to the sample mean. Although not commonly seen in psychometrics, the
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CV will be seen in biological journals (reporting the error of the assay), financial reports as
well as manufacturing process control situations.

CV =
σx

X̄
(3.9)

3.8 Geometric interpretations of Variance and Covariance

It is sometimes useful to think of data geometrically. A set of n scores on a single variable
may be thought of geometrically as representing a vector in n-dimensional space where the
dimensions of the space represent the individual scores. Center this vector on the grand mean
(i.e., convert the scores to deviation scores). Then the length of this vector is the square root
of the sums of squares and the average length of this vector across all dimensions is the
standard deviation.

Another measure of dispersion is the average squared distance between the n data points.
This is found by finding all n2 pairwise distances, squaring them, and then dividing by n2.
But since the diagonal of that matrix is necessarily zero, it is more appropriate to divide by
n*(n-1). This value is, it turns out, twice the variance. Remembering that standard deviation
is the square root of the variance, we find that the average distance between any two data
points is σx

√
2.

Why is this? Consider the matrix of distances between pairs of data points:




0 X1−X2 ... X1−Xn
X2−X1 0 ... Xn−X2

... ... 0 ...
Xn−X1 Xn−X2 ... 0





Square each element:




0 X2
1 +X2

2 −2X1X2 ... X2
1 +X2

n −2X1Xn
X2

1 +X2
2 −2X1X2 0 ... X2

2 +X2
n −2X2Xn

... ... 0 ...
X2

1 +X2
n −2X1Xn X2

2 +X2
n −2X2Xn ... 0



 .

Sum all of these elements to obtain

n

∑
i=1

d2
i = 2n

n

∑
i=1

X2
i −2

n

∑
i=1

n

∑
j=1

XiXj (3.10)

The average squared distance may be obtained by dividing the total squared distance by
n2 (to obtain a population variance) or by n(n− 1) to obtain the sample estimate of the
variance.

d̄2 = 2(
n

∑
i=1

X2
i −

n

∑
i=1

n

∑
j=1

XiXj)/n)/(n−1) (3.11)

But this is just the same as
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2(
n

∑
i=1

X2
i −

n

∑
i=1

XiX.)/(n−1) = 2(
n

∑
i=1

X2
i −nX2

. )/(n−1) (3.12)

which is twice the variance:

σ2 = xT x/(n−1) = (X−X.)T (X−X.)/(n−1) =
n

∑
i=1

(Xi−X.)2/(n−1) = (
n

∑
i=1

X2
i −nX2

. )/(n−1)

(3.13)
That is, the average distance between any two data points will be σx

√
2. Knowing the

standard deviation allows us to judge not just how likely a point is deviate from the mean,
but also how likely two points are to differ by a particular amount. integrate this section

with previous sec-
tion

3.9 Variance, Covariance, and Distance

There are a variety of ways to conceptualize variance and covariance. Algebraically, for a
vector X with elements Xi, variance is the average of the sum of squared distances from the
mean ,X., (Equation 3.13) or alternatively, 1/2 of the average squared distance between any
two points (Equation 3.12). For two vectors, X1 and X2, the covariance between them may
be similarly defined as the average product of deviation scores:

Cov12 =
n

∑
i=1

x1ix2i/n =
n

∑
i=1

(X1i−X1.)(X2i−X2.)/n = {
n

∑
i=1

X1iX2i−
n

∑
i=1

X1i

n

∑
i=1

X2i/n}/n. (3.14)

A spatial interpretation of covariance may be expressed in terms of the average distance
between the corresponding points in X1 and X2. For simplicity, express each vector in terms
of deviations from the respective means: x1i = X1i−X1.

dist2
12 = ∑n

i=1 (x1i− x2i)2

n
= ∑n

i=1 (x2
1i + x2

2i−2x1ix2i)
n

= Var1 +Var2−2Cov12 (3.15)

That is, the covariance is the difference between the average of the variances of each vector
(which are themselves just twice the average squared distances between each point on a
vector) and half the average squared distance between the corresponding pair of points on
each vector.

Cov12 =
{Var1 +Var2−dist2

12}
2

=
{Var1 +Var2}

2
− dist2

12
2

. (3.16)

If each element of X1 is the same as each element of X2, then the pairwise distances are
zero, the two variance are identical, and the covariance is the same as the variance.
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3.10 Standard scores as unit free measures

In some fields, the unit of measurement is most important. In economics, a basic unit could
be the dollar or the logarithm of the dollar. In education the basic unit might be years of
schooling. In cognitive psychology the unit might be the millesecond. A tradition in much
of individual differences psychology is to ignore the units of measurement and to convert
deviation scores into standard scores. That is, to divide deviation scores by the standard
deviation:

zi = xi/σx = (X−X .)/
√

VarX (3.17)

One particularly attractive feature of standard scores is that they have mean of 0 and
standard deviation and variance of 1. This makes some derivations easier to do because
variances or standard deviations drop out of the equations. A disadvantage of standard scores
is communicating the scores to lay people. To be told that someone’s son or daughter has a
score of -1 is particularly discouraging. To avoid this problem (and to avoid the problem of
decimals and negative numbers in general) a number of transformations of standard scores
are used when communicating to the public. They are all of the form of multiplying the zi
scores by a constant and then adding a different constant (Table 3.11). The rescale function
does this by using the scale function to first convert the data to z scores, and then multiplies
by the desired standard deviation and adds the desired mean (see Figure 3.8).

Table 3.11 Raw scores (Xi) are typically converted into deviation scores (xi) or standard scores (zi).
These are, in turn, the transformed into “public” scores for communication to laypeople.

Transformation Mean Standard Deviation

Raw Data X . = ∑(Xi)/n sx =
�

∑(Xi−X .)2/(n−1)
deviation score xi = Xi−X . 0 sx =

�
∑(xi)2/(n−1)

standard score zi = xi/sx 0 1
“IQ” zi *15+100 100 15

“SAT” zi*100+500 500 100
“ACT” zi*6+18 18 6

“T-score” zi*10+ 50 50 10
“Stanine” zi*2.0+5 5 2.0

3.11 Assessing the higher order moments of the normal and other
distributions

The central limit theorem shows that the distribution of the means of independent identically
distributed samples with finite means and variances will tend asymptotically towards the
normal distribution originally described by DeMoivre in 1733, by Laplace in 1774 and Gauss
in 1809 and named by Galton (1877) and others discussed by Stigler (1986). The equation
for the normal curve expressed in terms of the mean and standard deviation is
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f (x,µ,σ) = N(µ,σ) =
1√

2πσ
e−

(x−µ)2

2σ2 . (3.18)

Three normal curves, differing in their mean and standard deviation (i.e, N(0,1),N(0,2)
and N(1,2)) are shown in Figure 3.7. Although typically shown in terms of N(0,1), alternative
scalings of the normal seen in psychology and psychometrics have different values of the mean
and standard deviation (Table 3.11 and Figure 3.8) partly in order to facilitate communication
with non-statisticians, and partly to obscure the meaning of the scores.
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Fig. 3.7 Normal curves can differ in their location (mean) as well as width (standard deviation).
Shown are normals with means of 0 or 1 and standard deviations of 1 or 2.

In addition to its mathematical simplicity, the normal distribution is seen in many settings
where the accumulation of errors is random (e.g., astronomical observations) or made up of
many small sources of variance (the distribution of height among Belgian soldiers as described
by Quetelet in 1837 (Stigler, 1999). Unfortunately, real data rarely are so easily described.
Karl Pearson (1905) made this distinction quite clearly:

The chief physical differences between actual frequency distributions and the Gaussian theoretical
distributions are:
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Fig. 3.8 The normal curve may be expressed in standard (z) units with a mean of 0 and a standard
deviation of 1. Alternative scalings of the normal include “percentiles” (a non linear transformation
of the z scores), “IQ” scores with a mean of 100, and a standard deviation of 15, “SAT/GRE” scores
with a mean of 500 and a standard deviation of 100, “ACT” scores with a mean of 18 and a standard
deviation of 6, or “standardized nines - stanines” with a mean of 5 and a standard deviation of 2. Note
that for stanines, each separate score refer to the range from -.5 to +.5 from that score. Thus, the 9th
stanine includes the z-score region from 1.75z and above and has 4% of the normal population. The
5 numbers of the box plot correspond to the lower whisker, 25th, 50th and 75th percentiles, and the
upper whisker.

(i) The significant separation between the mode of position of maximum frequency and the
average or mean character.

(ii) The ratio of this separation between mean and mode to the variability of the character–a
quantity I have termed the skewness.

(iii) A degree of flat-toppedness which is greater or less than that of the normal curve. Given two
frequency distributions which have the same variability as measured by the standard deviation,
they may be relatively more or less flat-topped than the normal curve. If more flat-topped I
term them platykurtic, if less flat-topped leptokurtic, and if equally flat-topped mesokurtic. A
frequency distribution may be symmetrical, satisfying both the first two conditions for normality,
but it may fail to be mesokurtic, and thus the Gaussian curve cannot describe it. (Pearson, 1905,
p 173).
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Just as the variance is the second moment around the mean and describes the width of
the distribution, so does the skew (the third moment) describe the shape and the kurotosis
(the fourth moment) the peakedness versus flatness of the distribution. Pearson (1905)

skew = γ1 =
µ3

σ3 =
√

n∑n
i=1 xi)3

(∑n
i=1 (x2

i )3/2 =
√

n∑n
i=1 (Xi−X .)3

(∑n
i=1 (Xi−X .)2)3/2 (3.19)

The standard error of skew is

σγ1 =
�

6
N

(3.20)

Distributions with positive skew have long right tails while those with negative skew have
long left tails. Examples of positively skewed distribution are common in psychological mea-
sures such as reaction time Ratcliff (1993) or measures of negative affect Rafaeli and Revelle
(2006). As we shall see later (Chapter 4), differences in skew are particularly important in
the effect they have on correlations. Positively skewed reaction time data are sometimes
modeled as log normal distributions or sometimes as Weibull distribtions. Just as the normal
represents the sum of Independently and Identically Distributed random variables (IIDs),
so does the log normal represent the product of IIDs. Such a positively skewed distribution
that is commonly seen in economics is the log normal distribution which can reflect a nor-
mal distribution of multiplicative growth rates (Figure 3.9) and is seen in the distribution
of income in the United States. That is, if the percentage raise given employees is normally
distributed, the resulting income distribution after several years of such raises will be log
normal. Cognitive processes operating in a cascade can also be thought of in terms of the
log normal distribution. Estimating the central tendency of skewed distributions is particu-
larly problematic, for the various estimates discussed earlier will differ drastically. Consider
the curve generated using the dlnorm function set with a log mean of 10.5 and a sd of .8.
These values were chosen to give a rough example of the distribution of family income in
the US which in 2008 had a median of $50,302, a mean of $68,204 and a trimmed mean of
$56,720. (See the income data set for the data). An even more drastic curve is the power law
( f (n) = K/na) summarizing the distribution of publications of Ph.Ds. with a mode of 0 and
an upper range in the 1,000s (Anderson et al., 2008; Lotka, 1926; Vinkler, 2007).

Platykurtic distributions (kurtosis > 0) have more of their density in the center of the
distribution than would be expected given the magnitude of their standard deviations. Lep-
tokurtic distributions , on the other hand, have “fatter tails” than would be expected given
their standard deviation Pearson (1905). (“Student” introduced the mnemonic that a platy-
pus has a short tail and that kangaroos, who are known for “lepping” have long tails Student
(1927)).

kurtosis = γ2 =
µ4

σ4 −3 =
(∑n

i=1 xi)4

∑n
i=1 x4

i
−3 =

(∑n
i=1 (Xi−X .))4

∑n
i=1 (Xi−X .)4 −3 (3.21)

Given the standard error of the skew (Equation 3.20) and the standard error of kurtosis
(Equation 3.22), it is possible to test whether a particular distribution has excess skew or
kurtosis.

σγ2 =
�

24
N

(3.22)

Although it is frequently reported that in positively skewed distribution, the mode will be
less than the mean which will be less than the median (e.g., Figure 3.9 , this is not always
the case. von Hippel (2005) discusses a number of counter examples.
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Fig. 3.9 A log normal distribution is skewed to the right and represents the distribution of normally
distributed multiplicative processes. An example of US. family income distributions adapted from the
US Census (2008) is shown with a mean of $66,570, trimmed mean of $55,590, and median of $48,060.
Means, the median, skew and kurtosis were found from simulating 10,000 cases from the log normal
with a log mean of 10.5 and sd of .8. Curve drawn with the curve function plotting the dlnorm function
with mean of 10.5 and sd of .8: curve(dlnorm(x, 10.8, .8), x = c(0,250000)). The top panel shows the
modeled data, the lower panel, the actual data. Values for income above 100,000 are inferred from the
census data categories of 100-150, 150-200, 200-250 and fit with a negative exponential. See income
for the US census data set on family income. The smooth curve for the numbers less than 100,000 is
generated using the lowess function. The sawtooth alternation of the actual data suggests that people
are reporting their income to the nearest $5,000.

It is helpful to consider the distributions generated from several different families of dis-
tributions to realize that just because a distribution is symmetric and peaks in the middle
does not tell us much about the length of the tails. Consider the four distributions shown in
Figure 3.10. The top and bottom curves are normal, one with standard deviation 1, one with
standard deviation 2. Both of these have 0 skew and 0 kurtosis. However the other two, the
logistic and the Cauchy are definitely not normal. In fact, the Cauchy has infinite variance
and kurtosis!

The Cauchy distribution is frequently used as a counter example to those who want to
generalize the central limit theorem to all distributions, for the means of observations from
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the Cauchy distribution are not distributed normally, but rather remain distributed as before.
The distribution is sometimes referred to as the“witch of Agnesi”(Stigler, 1999). The function
is

f (x) =
1

π(1+ x2)
(3.23)
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Fig. 3.10 Symmetric and single peaked is not the same as being a normal distribution. Two of these
distributions are normal, differing only in their standard deviations, one, the logistic has slightly more
kurtosis, and one (the Cauchy) has infinite variance and kurtosis.

3.12 Generating commonly observed distributions

Many statistics books include tables of the t or F or χ2 distribution. By using R this is
unnecessary since these and many more distributions can be obtained directly. Consider the
normal distribution as an example. dnorm(x, mean=mu, sd=sigma) will give the probability
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density of observing that x in a distribution with mean=mu and standard deviation= sigma.
pnorm(q,mean=0,sd=1) will give the probability of observing the value q or less. qnorm(p,
mean=0, sd=1) will give the quantile value of a value with probability p. rnorm(n,mean,sd)
will generate n random observations sampled from the normal distribution with specified
mean and standard deviation. Thus, to find out what z value has a .05 probability we ask for
qnorm(.05). Or, to evaluate the probability of observing a z value of 2.5, specify pnorm(2.5).
(These last two examples are one side p values).

Applying these prefixes (d,p,q, r) to the various distributions available in R allows us to
evaluate or simulate many different distributions (Table 3.12).

Table 3.12 Some of the most useful distributions for psychometrics that are available as functions.
To obtain the density, prefix with d, probability with p, quantiles with q and to generate random
values with r. (e.g., the normal distribution may be chosen by using dnorm, pnorm, qnorm, or rnorm.)
Each function has specific parameters, some of which take default values, some of which require being
specified. Use help for each function for details.

Distribution base name Parameter 1 Parameter 2 Parameter 3 example application
Normal norm mean sigma Most data

Multivariate normal mvnorm mean r sigma Most data
Log Normal lnorm log mean log sigma income or reaction time

Uniform unif min max rectangular distributions
Binomial binom size prob Bernuilli trials (e.g. coin flips)

Student’s t t df non-centrality Finding significance of a t-test
Multivariate t mvt df corr non-centrality Multivariate applications

Fisher’s F f df1 df2 non-centrality Testing for significance of F test
χ2 chisq df non-centrality Testing for significance of χ2

Beta beta shape1 shape2 non-centrality distribution theory
Cauchy cauchy location scale Infinite variance distribution

Exponential exp rate Exponential decay
Gamma gamma shape rate scale distribution theoryh

Hypergeometric hyper m n k
Logistic logis location scale Item Response Theory
Poisson pois lambda Count data
Weibull weibull shape scale Reaction time distributions

3.13 Mixed distributions

The standard deviation and its associated transformations are useful if the data are normal.
But what if they are not? Consider the case of participants assessed on some measure. 90%
of these participants are sampled from a normal population with a mean of 0 and a standard
deviation (and variance) of 1. But if 10% of the participants are sampled from a population
with the same mean but 100 times as much variance (sd = 10), the pooled variance of the
sample will be .9 * 1 + .1 * 100 or 10.9 and the standard deviation will be 3.3. Although
it would seem obvious that these two distributions would appear to be very different, this
is not the case (see Figure 3.11 and Table 3.13). As discussed by Wilcox (2005), even if the
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contaminated distribution is a mixture of 90% N(0,1) and 10% N(3,40), the plots of the
uncontaminated and contaminated distributions look very similar.
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Fig. 3.11 Probability density distributions for a normal distribution with mean 0 and standard de-
viation 1, a contaminated distribution (dashed line) formed from combining a N(0,1) with a N(3,10),
and a normal with the same mean and standard deviation as the contaminated N(.3,3.3) (dotted line).
Adapted from Wilcox, 2005.

3.14 Robust measures of dispersion

Estimates of central tendency and of dispersion that are less sensitive to contamination
and outliers are said to be robust estimators. Just as the median and trimmed mean are
less sensitive to contamination, so is the median absolute difference from the median (mad).
Consider the following seven data sets: The first one (x) is simply a normal distribution with
mean 0 and sd of 1. Noise10, Noise20, and Noise40 are normals with means of 3 and standard
deviations of 10, 20, and 40 respectively. Mixed10 is made up of a mixture of 90% sampled
from x and 10% sampled from Noise10. Mixed20 has the same sampling frequencies, but noise
is sampled from Noise20. Similarly for Mixed40. X and the noise samples are created using
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the rnorm function to create random data with a normal distribution with a specified mean
and standard deviation. The mixtures are formed by combining (using c) random samples
(using sample) of the X and noise distributions. Descriptive statistics are found by describe.

The first four variables (X, Noise10, Noise20, and Noise40) are normally distributed, and
the means, trimmed means, and medians are almost identical. Similarly, the standard devi-
ations and median absolute deviations from the medians (MAD) are almost identical. But
this is not the case for the contaminated scores. Although the simple arithmetic means of
the mixed distributions reflect the contamination, the trimmed means (trimmed by dropping
the top and bottom 10%) and medians are very close to that of the uncontaminated distri-
bution. Similarly the MAD of the contaminated scores are barely affected (1.14 versus .99)
even though the standard deviations are drastically larger (12.58 versus 1.0).

Table 3.13 Generating distributions of normal and contaminated normal data. A normal distribution
with N(0,1) is 10% contaminated with N(3,10), N(3,20) or N(3,40). Although these mixtures are formed
from two normals, they are not normal, but rather have very heavy tails. Observe how the median
and trimmed mean are not affected by the contamination. Figure 3.11 shows a plot of the probability
density of the original and the mixed10 contaminated distribution. The contamination may be detected
by examining the difference between the standard deviation and the median absolute deviation from
the median or the kurtosis.

> n <- 10000
> frac <- .1
> m <- 3
> x <- rnorm(n)
> noise10 <- rnorm(n,m,sd=10)
> mixed10 <- c(sample(x,n * (1-frac),replace=TRUE),sample(noise10,n*frac,replace=TRUE))
> dmixed <- density(mixed,bw=.3,kernel="gaussian")
> noise20 <- rnorm(n,m,sd=20)
> noise40 <- rnorm(n,m,sd=40)
> mixed20 <- c(sample(x,n * (1-frac),replace=TRUE),sample(noise20,n*frac,replace=TRUE))
> mixed40 <- c(sample(x,n * (1-frac),replace=TRUE),sample(noise40,n*frac,replace=TRUE))
> data.df <- data.frame(x,noise10,noise20,noise40,mixed10,mixed20,mixed40)
> describe(data.df)

var n mean sd median trimmed mad min max range skew kurtosis se
x 1 10000 0.01 1.00 0.01 0.01 0.99 -4.28 3.71 7.99 0.02 -0.04 0.01
noise10 2 10000 2.89 9.91 2.94 2.89 9.95 -32.96 46.39 79.35 0.01 0.02 0.10
noise20 3 10000 3.14 20.21 3.10 3.12 20.25 -74.10 85.71 159.81 0.01 -0.02 0.20
noise40 4 10000 3.49 40.41 3.05 3.23 40.51 -149.29 169.40 318.69 0.06 -0.07 0.40
mixed10 5 10000 0.31 3.38 0.05 0.06 1.10 -30.01 46.39 76.40 2.29 24.49 0.03
mixed20 6 10000 0.27 6.41 0.02 0.02 1.14 -66.22 64.16 130.38 1.16 26.01 0.06
mixed40 7 10000 0.25 12.58 0.00 0.00 1.14 -117.71 169.40 287.11 1.01 27.64 0.13

Robust estimates of central tendency and of dispersion are important to consider when
estimating experimental effects, for although conventional tests such as the t-test and F-test
are not overly sensitive to Type I errors when the distributions are not normal, they are very
sensitive to Type II errors. That is to say, if the data are not normal due to contamination as
seen is Figure 3.11, true differences of central tendencies will not be detected by conventional
tests (Wilcox, 1987; Wilcox and Keselman, 2003; Wilcox, 2005). Robust estimates of central
tendency and robust equivalents of the t and F tests are slightly less powerful when the data
are truly normal, but much more powerful in cases of non-normality Wilcox and Keselman
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(2003); Wilcox (2005). Functions to do robust analysis are available in multiple packages,
including MASS, robust, and robustbase as well as from the web pages of various investigators
(e.g. Rand Wilcox at the University of Southern California).

3.15 Monotonic transformations of data and “Tukey’s ladder”

If the data are non-normal or if the relations are non-linear, what should we do? John Tukey
(1977) suggested a ladder of tranformations that can be applied to the data (Table 3.14,
Figure 3.12). These transformations have the effect of emphasizing different aspects of the
data. If the data are skewed heavily to the right (e.g., for reaction times or incomes), taking
logs or reciprocals deemphasizes the largest numbers and makes distinctions between the
smaller numbers easier to see. Similarly, taking squares or cubes of the data can make some
relationships much clearer. Consider the advantage of treating distance travelled as a func-
tion of squared time when study the effects of acceleration. Similarly, when examining the
damaging effects of wind intensity upon houses, squaring the wind velocity leads to a better
understanding of the effects. The appropriate use of the ladder of transformations is look at
the data, look at the distributions of the data, and then look at the bivariate plots of the
data. Try alternative transforms until these exploratory plots look better. Data analysis is
detective work and requires considering many alternative hypotheses about the best way to
treat the data.

Table 3.14 Tukey’s ladder of transformations. One goes up and down the ladder until the relationships
desired are roughly linear or the distribution is less skewed. The effect of taking powers of the numbers
is to emphasize the larger numbers, the effect of taking roots, logs, or reciprocals is to emphasize the
smaller numbers.

Transformation effect
x3 emphasize large numbers reduce negative skew
x2 emphasize large numbers reduce negative skew
x the basic data√
x emphasize smaller numbers reduce positive skew

-1/x emphasize smaller numbers reduce positive skew
log(x) emphasize smaller numbers reduce positive skew
−1/x2 emphasize smaller numbers reduce positive skew
−1/x3 emphasize smaller numbers reduce positive skew

mention Box Cox?

3.16 What is the fundamental scale?

It would be nice to be able to answer this question with a simple statement, but the answer
is really that it all depends. It depends upon what is being measured and what inferences
we are trying to draw from the data. We have recognized for centuries that money, whether
expressed in dollars, ducats, Euros, Renminbi, or Yen is measured in a linear, ratio scale
but has a negatively accelerated effect upon happiness (Bernoulli, 1738). (That is, the utility



82 3 The problem of scale

0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2

Tukey's ladder of transformations

original

tra
ns
fo
rm
ed

x^3
x^2
x
sqrt(x)
−1/x
log(x)
−1/x^2
−1/x^3

Fig. 3.12 Tukey (1977) suggested a number of transformations of data that allow relationships to be
seen more easily. Ranging from the cube to the reciprocal of the cube, these transformations emphasize
different parts of the distribution.

of money is negatively accelerated.) The perceived intensity of a stimulus is a logarithmic
function of the physical intensity (Weber, 1834b). The probability of giving a correct answer
on a test is an increasing but non-linear function of the normal way we think of ability
(Embretson and Hershberger, 1999; McDonald, 1999). The amount of energy used to heat
a house is a negative but linear function of the outside temperature. The time it takes to
fall a particular distance is a function of the square root of that distance. The gravitational
attraction between two masses is a function of the inverse of the squared distance. The hull
speed of a sailboat is function of the square root of the length of the boat. Sound intensity
in decibels is expressed in logarithmic units of the ratio of the power of the observed sound
to the the power of a reference sound. The units of the pH scale in chemistry are (negative)
logarithmic units of the concentration of hydrogen ions.

The conclusion from these examples is that the appropriate scale is one that makes the
relationships between our observed variables and manipulations easier to understand and to
communicate. The scales of our observed variables are reflections of the values of our latent
variables (Figure 3.1) and are most useful when they allow us to simplify our inferences about
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the the relationships between the latent variables. By not considering the scaling properties
of our observations it is easy to draw incorrect conclusions about the the underlying processes
(consider the example discussed in section 3.6). By searching for the transformations that
allow us to best represent the data perhaps we are able to better understand the latent
processes involved.


