
Chapter 5

Multiple correlation and multiple regression

The previous chapter considered how to determine the relationship between two variables
and how to predict one from the other. The general solution was to consider the ratio of
the covariance between two variables to the variance of the predictor variable (regression)
or the ratio of the covariance to the square root of the product the variances (correlation).
This solution may be generalized to the problem of how to predict a single variable from the
weighted linear sum of multiple variables (multiple regression) or to measure the strength of
this relationship (multiple correlation). As part of the problem of finding the weights, the
concepts of partial covariance and partial correlation will be introduced. To do all of this will
require finding the variance of a composite score, and the covariance of this composite with
another score, which might itself be a composite.

Much of psychometric theory is merely an extension, an elaboration, or a generalization
of these concepts. Almost all tests are composites of items or subtests. An understanding
how to decompose test variance into its component parts, and conversely, an understanding
how to analyze tests as composites of items, allows us to analyze the meaning of tests. But
tests are not merely composites of items. Tests relate to other tests. A deep appreciation of
the basic Pearson correlation coefficient facilitates an understanding of its generalization to
multiple and partial correlation, to factor analysis, and to questions of validity.

5.1 The variance of composites

If x1 and x2 are vectors of N observations centered around their mean (that is, deviation
scores) their variances are Vx1 = ∑x2

i1/(N − 1) and Vx2 = ∑x2
i2/(N − 1), or, in matrix terms

Vx1 = x
�
1
x1/(N−1) and Vx2 = x

�
2
x2/(N−1). The variance of the composite made up of the sum

of the corresponding scores, x + y is just

V(x1+x2) = ∑(xi + yi)2

N −1
= ∑x2

i +∑y2
i +2∑xiyi

N −1
=

(x+y)�(x+y)
N −1

. (5.1)

Generalizing 5.1 to the case of n xs, the composite matrix of these is just NXn with dimensions
of N rows and n columns. The matrix of variances and covariances of the individual items of
this composite is written as S as it is a sample estimate of the population variance-covariance
matrix, Σ . It is perhaps helpful to view S in terms of its elements, n of which are variances
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128 5 Multiple correlation and multiple regression

and n2 −n = n∗ (n−1) are covariances:

S =





vx1 cx1x2 · · · cx1xn
cx1x2 vx2 cx2xn

...
. . .

...
cx1xn cx2xn · · · vxn





The diagonal of S = diag(S) is just the vector of individual variances. The trace of S is
the sum of the diagonals and will be used a great deal when considering how to estimate
reliability. It is convenient to represent the sum of all of the elements in the matrix, S, as the
variance of the composite matrix.

VX = ∑ X
�
X

N −1
=

1
�(X�

X)1
N −1

.

5.2 Multiple regression

The problem of the optimal linear prediction of ŷ in terms of x may be generalized to the
problem of linearly predicting ŷ in terms of a composite variable X where X is made up of
individual variables x1,x2, ...,xn. Just as by.x = covxy/varx is the optimal slope for predicting
y, so it is possible to find a set of weights (β weights in the standardized case, b weights in
the unstandardized case) for each of the individual xis.

Consider first the problem of two predictors, x1 and x2, we want to find the find weights,
bi, that when multiplied by x1 and x2 maximize the covariances with y. That is, we want to
solve the two simultaneous equations

�
vx1b1 + cx1x2b2 = cx1y
cx1x2b1 + vx2b2 = cx2y

�
.

or, in the standardized case, find the βi:
�

β1 + rx1x2β2 = rx1y
rx1x2β1 +β2 = rx2y

�
. (5.2)

We can directly solve these two equations by adding and subtracting terms to the two
such that we end up with a solution to the first in terms of β1 and to the second in terms of
β2:

�
β1 = rx1y − rx1x2β2
β2 = rx2y − rx1x2β1

�
(5.3)

Substituting the second row of (5.3) into the first row, and vice versa we find
�

β1 = rx1y − rx1x2(rx2y − rx1x2β1)
β2 = rx2y − rx1x2(rx1y − rx1x2β2)

�

Collecting terms and rearranging :
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�
β1 − r2

x1x2β1 = rx1y − rx1x2rx2y
β2 − r2

x1x2β2 = rx2y − rx1x2rx1y

�

leads to �
β1 = (rx1y − rx1x2rx2y)/(1− r2

x1x2)
β2 = (rx2y − rx1x2rx1y)/(1− r2

x1x2)

�
(5.4)

Alternatively, these two equations (5.2) may be represented as the product of a vector of
unknowns (the β s) and a matrix of coefficients of the predictors (the rxis) and a matrix of
coefficients for the criterion (rxiy):

(β1β2)
�

rx1x1 rx1x2
rx1x2 rx2x2

�
= (rx1y rx2x2) (5.5)

If we let β = (β1β2), R =
�

rx1x1 rx1x2
rx1x2 rx2x2

�
and rxy = (rx1y rx2x2) then equation 5.5 becomes

βR = rxy (5.6)

and we can solve Equation 5.6 for β by multiplying both sides by the inverse of R.

β = βRR
−1 = rxyR

−1 (5.7)

Similarly, if cxy represents the covariances of the xi with y, then the b weights may be found
by

b = cxyS
−1

and thus, the predicted scores are

ŷ = βX = rxyR
−1

X. (5.8)

The βi are the direct effects of the xi on y. The total effects of xi on y are the correlations,
the indirect effects reflect the product of the correlations between the predictor variables and
the direct effects of each predictor variable.

Estimation of the b or β vectors, with many diagnostic statistics of the quality of the
regression, may be found using the lm function. When using categorical predictors, the linear
model is also known as analysis of variance which may be done using the anova and aov func-
tions. When the outcome variables are dichotomous, logistic regression using the generalized
linear model function glm and a binomial error function. A complete discussion of the power
of the generalized linear model is beyond any introductory text, and the interested reader
is referred to e.g., Cohen et al. (2003); Dalgaard (2002); Fox (2008); Judd and McClelland
(1989); Venables and Ripley (2002).

Diagnostic tests of the regressions, including plots of the residuals versus estimated values,
tests of the normality of the residuals, identification of highly weighted subjects are available
as part of the graphics associated with the lm function.
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5.2.1 Direct and indirect effects, suppression and other surprises

If the predictor set xi,x j are uncorrelated, then each separate variable makes a unique con-
tribution to the dependent variable, y, and R2,the amount of variance accounted for in y, is
the sum of the individual r2. In that case, even though each predictor accounted for only
10% of the variance of y, with just 10 predictors, there would be no unexplained variance.
Unfortunately, most predictors are correlated, and the β s found in 5.5 or 5.7 are less than
the original correlations and since

R2 = ∑βirxiy = β �
rxy

the R2 will not increase as much as it would if the predictors were less or not correlated.
An interesting case that occurs infrequently, but is important to consider, is the case of

suppression. A suppressor may not correlate with the criterion variable, but, because it does
correlate with the other predictor variables, removes variance from those other predictor vari-
ables (Nickerson, 2008; Paulhus et al., 2004). This has the effect of reducing the denominator
in equation 5.5 and thus increasing the betai for the other variables. Consider the case of
two predictors of stock broker success: self reported need for achievement and self reported
anxiety (Table 5.1). Although Need Achievement has a modest correlation with success, and
Anxiety has none at all, adding Anxiety into the multiple regression increases the R2 from
.09 to .12. An explanation for this particular effect might be that people wo want to be stock
brokers are more likely to say that they have high Need Achievement. Some of this vari-
ance is probably legitimate, but some might be due to a tendency to fake positive aspects.
Low anxious scores could reflect a tendency to fake positive by denying negative aspects.
But those who are willing to report being anxious probably are anxious, and are telling the
truth. Thus, adding anxiety into the regression removes some misrepresentation from the
Need Achievement scores, and increases the multiple R1

5.2.2 Interactions and product terms: the need to center the data

In psychometric applications, the main use of regression is in predicting a single criterion
variable in terms of the linear sums of a predictor set. Sometimes, however, a more appropriate
model is to consider that some of the variables have multiplicative effects (i.e., interact) such
the effect of x on y depends upon a third variable z. This can be examined by using the
product terms of x and z. But to do so and to avoid problems of interpretation, it is first
necessary to zero center the predictors so that the product terms are not correlated with the
additive terms. The default values of the scale function will center as well as standardize
the scores. To just center a variable, x, use scale(x,scale=FALSE). This will preserve the
units of x. scale returns a matrix but the lm function requires a data.frame as input. Thus,
it is necessary to convert the output of scale back into a data.frame.

A detailed discussion of how to analyze and then plot data showing interactions between
experimental variables and subject variables (e.g., manipulated positive affect and extraver-
sion) or interactions of subject variables with each other (e.g., neuroticism and extraversion)

1 Atlhough the correlation values are enhanced to show the effect, this particular example was observed
in a high stakes employment testing situation.
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Table 5.1 An example of suppression is found when predicting stockbroker success from self report
measures of need for achievement and anxiety. By having a suppressor variable, anxiety, the multiple
R goes from .3 to .35.

> stock
> mat.regress(stock,c(1,2),3)

Nach Anxiety Success
achievement 1.0 -0.5 0.3
Anxiety -0.5 1.0 0.0
Success 0.3 0.0 1.0

$beta
Nach Anxiety
0.4 0.2

$R
Success

0.35
$R2
Success

0.12
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Fig. 5.1 There are least four basic regression cases: The independent predictor where the βi are the
same as the correlations; the normal, correlated predictor case, where the βi are found as in 5.7; the
case of suppression, where although a variable does not correlate with the criterion, because it does
correlate with a predictor, it will have useful βi weight; and the case where the model is misspecified
and in fact a missing variable accounts for the correlations.
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is beyond the scope of this text and is considered in great detail by Aiken and West (1991)
and Cohen et al. (2003), and in less detail in an online appendix to a chapter on exper-
imental approaches to personality Revelle (2007), http://personality-project.org/r/
simulating-personality.html. In that appendix, simulated data are created to show ad-
ditive and interactive effects. An example analysis examines the effect of Extraversion and
a movie induced mood on positive affect. The regression is done using the lm function on
the centered data (Table 5.2). The graphic display shows two regression lines, one for the
simulated “positive mood induction”, the other for a neutral induction.

Table 5.2 Linear model analysis of simulated data showing an interaction between the personality
dimension of extraversion and a movie based mood induction. Adapted from Revelle (2007).

> # a great deal of code to simulate the data
> mod1 <- lm(PosAffect ~ extraversion*reward,data = centered.affect.data) #look for interactions
> print(summary(mod1,digits=2)

Call:
lm(formula = PosAffect ~ extraversion * reward, data = centered.affect.data)

Residuals:
Min 1Q Median 3Q Max

-2.062 -0.464 0.083 0.445 2.044

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8401 0.0957 -8.8 6e-14 ***
extraversion -0.0053 0.0935 -0.1 0.95
reward1 1.6894 0.1354 12.5 <2e-16 ***
extraversion:reward1 0.2529 0.1271 2.0 0.05 *
---
Signif. codes: 0 Ô***~O 0.001 Ô**~O 0.01 Ô*~O 0.05 Ô.~O 0.1 Ô ~O 1

Residual standard error: 0.68 on 96 degrees of freedom
Multiple R-squared: 0.63, Adjusted R-squared: 0.62
F-statistic: 54 on 3 and 96 DF, p-value: <2e-16

5.2.3 Confidence intervals of the regression and regression weights

The multiple correlation finds weights to best fit the particular sample. Unfortunately, it is
biased estimate of the population values. Consequently, the value of R2 is likely to shrink
when applied to another sample. Standard estimates for the amount of shrinkage consider
the size of the sample as well as the number of variables in the model. For N subjects and k
predictors, estimated R2, R̃2, is

R̃2 = 1− (1−R2)
N −1

N − k−1
.
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Fig. 5.2 The (simulated) effect of extraversion and movie induced mood on positive affect. Adapted
from Revelle (2007). Detailed code for plotting interaction graphs is available in the appendix.

The confidence interval of R2 is, of course, a function of the variance of R2 which is (taken
from Cohen et al. (2003) and Olkin and Finn (1995))

SE2
R2 =

4R2(1−R2)(N − k− = 1)2

(N2 −1)(N +3)
.

Because multiple R is partitioning the observed variance into modeled and residual vari-
ance, testing the hypothesis that the multiple R is zero may be done by analysis of variance
and leads to an F ratio with k and (N-k-1) degrees of freedom:

F =
R2(n− k−1)

(1−R2)k
.

The standard errors of the beta weights is

SEβi =

�
1−R2

(N − k−1)(1−R2
i )

where R2
i is the multiple correlation of xi on all the other x j variables. (This term, the squared

multiple correlation, is used in estimating communalities in factor analysis, see 6.2.1. It may
be found by the smc function.).
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5.2.4 Multiple regression from the covariance/correlation matrix

Using the raw data allows for error diagnostics and for the inclusion of interaction terms. But
since Equation 5.7 is expressed in terms of the correlation matrix, the regression weights can
be found from the correlation matrix. This is particularly useful if one does not have access
to the raw data (e.g., when reanalyzing a published study), or if the correlation matrix is
synthetically constructed. The function mat.regress allows one to extract subsets of vari-
ables (predictors and criteria) from a matrix of correlations and find the multiple correlations
and beta weights of the x set predicting each member of the y set.

5.2.5 The robust beauty of linear models

Although the β weights 5.7 are the optimal weights, it has been known since Wilks (1938) that
differences from optimal do not change the result very much. This has come to be called “the
robust beauty of linear models” Dawes and Corrigan (1974); Dawes (1979) and follows the
principal of “it don’t make no nevermind” Wainer (1976). That is, for standardized variables
predicting a criterion with .25 < β < .75, setting all betai = .5 will reduce the accuracy of
prediction by no more than 1/96th. Thus the advice to standardize and add. (Clearly this
advice does not work for strong negative correlations, but in that case standardize and
subtract. In the general case weights of -1, 0, or 1 are the robust alternative.)

A graphic demonstration of how a very small reduction in the R2 value can lead to an
infinite set of “fungible weights” that are all equally good in predicting the criterion is the
paper by Waller (2008) with associated R code. This paper reiterates the skepticism that
one should have for the interpretability of any particular pattern of β weights. A much fuller
treatment of the problem of interpreting differences in beta weights is found in the recent
chapter by Azen and Budescu (2009).

5.3 Partial and semi-partial correlation

Given three or more variables, an interesting question to ask is what is the relationship
between xi and y when the effect of x j has been removed? In an experiment it is possible to
answer this by forcing xi and x j to be independent by design. Then it is possible to decompose
the variance of y in terms of effects of xi and x j and possibly their interaction. However, in
the correlational case, it is likely that xi and x j are correlated. A solution is to consider linear
regression to predict xi and y from x j and to correlate the residuals. That is, we know from
linear regression that it is possible to predict xi and y from x j. Then the correlation of the
residuals xi. = xi− x̂i and y. j = y− ŷ j is a measure of the strength of the relationship between
xi and y when the effect of x j has been removed. This is known as the partial correlation, for
it has partialed out the effects on both the xi and y of the other variables.

In the process of finding the appropriate weights in the multiple regression, the effect of
each variable xi on the criterion y was found with the effect of the other x j( j �= i) variables
removed. This was done explicitly in Equation 5.4 and implicitly in 5.7. The numerator
in 5.4 is a covariance with the effect of the second variable removed and the denominator
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is a variance with the second variable removed. Just as in simple regression where β is a
covariance divided by a variance and a correlation is a covariance divided by the square root
of the product of two variances, so is the case in multiple correlation where the βi is a partial
covariance divided by a partial variance and and a partial correlation is a partial covariance
divided by the square root of the product of two partial variances. The partial correlation
between xi and y with the effect of x j removed is

r(xi.x j)(y.x j) =
rxiy − rxix j rx jy�

(1− r2
xix j

)(1− r2
yx j

)
(5.9)

Compare this to 5.4 which is the formula for the β weight.
Given a data matrix, X and a matrix of covariates, Z, with correlations Rxz with X, and

correlations Rz with each other, the residuals, X* will be

X
∗ = X−RxzR

−1
z Z

To find the matrix of partial correlations, R* where the effect of a number of the Z variables
been removed, just express equation 5.9 in matrix form. First find the residual covariances,
C* and then divide these by the square roots of the residual variances (the diagonal elements
of C*).

C
∗ = (R−RxzR

−1
z )

R
∗ = (

�
diag(C∗)

−1
C
∗�diag(C∗)

−1
(5.10)

Consider the correlation matrix of five variables seen in Table 5.3. The partial correlations of
the first three with the effect of the last two removed is found using the partial.r function.

Table 5.3 Using partial.r to find a matrix of partial correlations

> R.mat

V1 V2 V3 V4 V5
V1 1.00 0.56 0.48 0.40 0.32
V2 0.56 1.00 0.42 0.35 0.28
V3 0.48 0.42 1.00 0.30 0.24
V4 0.40 0.35 0.30 1.00 0.20
V5 0.32 0.28 0.24 0.20 1.00

> partial.r(R.mat,c(1:3),c(4:5)) #specify the matrix for input, and the columns for the X and Z variables

V1 V2 V3
V1 1.00 0.46 0.38
V2 0.46 1.00 0.32
V3 0.38 0.32 1.00

The semi-partial correlation, also known as the part-correlation is the correlation between
xi and y removing the effect of the other x j from the predictor, xi, but not from the criterion,
y. It is just

r(xi.x j)(y) =
rxiy − rxix j rx jy�

(1− r2
xix j

)
(5.11)
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express in matrix
form

5.3.1 Alternative interpretations of the partial correlation

Partial correlations are used when arguing that the effect of xi on y either does or does remain
when other variables, x j are statistically “controlled”. That is, in Table 5.3, the correlation
between V1 and V2 is very high, even when the effects of V4 and V5 are removed. But this
interpretation requires that each variable is measured without error. An alternative model
that corrects for error of measurement (unreliability) would show that when the error free
parts of V4 and V5 are used as covariates, the partial correlation between V1 and V2 becomes
0.. This issue will be discussed in much more detail when considering models of reliability as
well as factor analysis and structural equation modeling .

5.4 Alternative regression techniques

That the linear model can be used with categorical predictors has already been discussed.
Generalizations of the linear model to outcomes than are not normally distributed fall under
the class of the generalized linear model and can found using the glm function. One of the
most common extensions is to the case of dichotomous outcomes (pass or fail, survive or die)
which may be predicted using logistic regression. Another generalization is to non-normally
distributed count data or rate data where either Poisson regression or negative binomial
regression are used. These models are solved by iterative maximum likelihood procedures
rather than ordinary least squares as used in the linear model.

The need for these generalizations is that the normal theory of the linear model is inap-
propriate for such dependent variables. (e.g., what is the meaning of a predicted probability
higher than 1 or less than 0?) The various generalizations of the linear model transform the
dependent variable in some way so as to make linear changes in the predictors lead to linear
changes in the transformed dependent variable. For more complete discussions of when to
apply the linear model versus generalizations of these models, consult Cohen et al. (2003) or
Gardner et al. (1995).

5.4.1 Logistic regression

Consider, for example, the case of a binary outcome variable. Because the observed values
can only be 0 or 1, it is necessary to predict the probability of the score rather than the
score itself. But even so, probabilities are bounded (0,1) so regression estimates less than
0 or greater than 1 are meaningless. A solution is to analyze not the data themselves, but
rather a monotonic transformation of the probabilities, the logistic function:

p(Y |X) =
1

1+ e−(β0+βx) .
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Using deviation scores, if the likelihood, p(y), of observing some binary outcome, y, is a
continuous function of a predictor set, X, where each column of X, xi, is related to the
outcome probability with a logistic function where β0 is the predicted intercept and βi is the
effect of xi

p(y|x1 . . .xi . . .xn) =
1

1+ e−(β0+β1x1+...βixi+...βnxn)

and therefore, the likelihood of not observing y, p(ỹ), given the same predictor set is

p(ỹ|x1 . . .xi . . .xn) = 1− 1
1+ e−(β0+β1x1+...βixi+...βnxn) =

e−(β0+β1x1+...βixi+...βnxn)

1+ e−(β0+β1x1+...βixi+...βnxn)

then the odds ratio of observing y to not observing y is

p(y|x1 . . .xi . . .xn)
p(ỹ|x1 . . .xi . . .xn)

=
1

e−(β0+β1x1+...βixi+...βnxn) = e(β0+β1x1+...βixi+...βnxn).

Thus, the logarithm of the odds ratio (the log odds) is a linear function of the xi:

ln(odds) = β0 +β1x1 + . . .βixi + . . .βnxn = β0 +βX (5.12)

Consider the probability of being a college graduate given the predictors of age and several
measures of ability. The data set sat.act has a measure of education (0 = not yet finished
high school, ..., 5 have a graduate degree). Converting this to a dichotomous score (education
>3) to identify those who have finished college or not, and then predicting this variable by a
logistic regression using the glm function shows that age is positively related to the probability
of being a college graduate (not an overly surprising result) as is a higher ACT (American
College Testing program) score. The results are expressed as changes in the logarithm of
the odds for unit changes in the predictors. Expressing these as odds ratios may be done by
taking the anti-log (i.e., the exponential) of the parameters. The confidence intervals of the
parameters or of the Odds Ratios may be found by using the confinit function (Table 5.4).

5.4.2 Poisson regression, quasi-Poisson regression, and
negative-binomial regression

If the underlying process is thought to be binary with a low probability of one of the two
alternatives (e.g., scoring a goal in a football tournament, speaking versus not speaking in
a classroom, becoming sick or not, missing school for a day, dying from being kicked by a
horse, a flying bomb hit in a particular area, a phone trunk line being in use, etc.) sampled
over a number of trials and the measure is the discrete counts (e.g., 0, 1, ... n= number of
responses) of the less likely alternative, one appropriate distributional model is the Poisson.
The Poisson is the limiting case of a binomial over N trials with probability p for small p.
For a random variable, Y, the probability that it takes on a particular value, y, is

p(Y = y) =
e−λ λ y

y!

where both the expectation (mean) and variance of Y are
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Table 5.4 An example of logistic regression using the glm function. The resulting coefficients are the
parameters of the logistic model expressed in the logarithm of the odds. They may be converted to
odds ratios by taking the exponential of the parameters. The same may be done with the confidence
intervals of the parameters and of the odds ratios.

> data(sat.act)
> college <- (sat.act$education > 3) +0 #convert to a binary variable
> College <- data.frame(college,sat.act)
> logistic.model <- glm(college~age+ACT,family=binomial,data=College)
> summary(logistic.model)

Call:
glm(formula = college ~ age + ACT, family = binomial, data = College)
Deviance Residuals:

Min 1Q Median 3Q Max
-3.8501 -0.6105 -0.4584 0.5568 1.7715
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.78855 0.79969 -9.739 <2e-16 ***
age 0.23234 0.01912 12.149 <2e-16 ***
ACT 0.05590 0.02197 2.544 0.0109 *
---
Signif. codes: 0 Ô***~O 0.001 Ô**~O 0.01 Ô*~O 0.05 Ô.~O 0.1 Ô ~O 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 941.40 on 699 degrees of freedom
Residual deviance: 615.32 on 697 degrees of freedom
AIC: 621.32
Number of Fisher Scoring iterations: 5

> round(exp(coef(logistic.model)),2)
> round(exp(confint(logistic.model)),digits=3)

(Intercept) age ACT
0.00 1.26 1.06

2.5 % 97.5 %
(Intercept) 0.000 0.002
age 1.217 1.312
ACT 1.014 1.105

E(Y ) = var(Y ) = λ (5.13)

and y factorial is
y! = y∗ (y−1)∗ (y−2)...∗2∗1.

The sum of independent Poisson variables is itself distributed as a Poisson variable, so it is
possible to aggregate data across an independent grouping variable.

Poisson regression models the mean for Y by modeling λ as an exponential function of
the predictor set (xi)

E(Y ) = λ = eα+β1x1+···+βpxp

and the log of the mean will thus be a linear function of the predictors.
Several example data sets are available in R to demonstrate the advantages of Poisson

regression over simple linear regression. epil in MASS reports the number of epileptic seizures
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before and after administration of an anti-seizure medication or a placebo as a function of
age and other covariates, quine (also in MASS reports the rate of absenteeism in a small
town in Australia as a function of culture, age, sex, and learning ability.

In the Poisson model, the mean has the same value as the variance (Equation 5.13).
However, overdispersed data have larger variances than expected from the Poisson model.
Examples of such data include the number of violent episodes of psychatric patients (Gardner
et al., 1995) or the number of seals on a beach pull out (Ver Hoef and Boveng, 2007). Such data
should be modeled using the negative binomial or an overdispered Poisson model Gardner
et al. (1995). The over-dispersed Poisson model adds an additional parameter, γ, to the
Poisson variance model:

var(Y ) = γλ .

These generalizations of the linear model make use of the glm function with a link function
of the appropriate error family for the particular model. Thus, logistic regression uses the
binomial family (Table 5.4) and poisson regression uses a logarthmic family (Table 5.5).
Negative binomial regression may be done using the glm.nb function from the MASS package.

5.4.3 Using multiple regression for circular data

Some variables show a cyclical pattern over periods of hours, days, months or years. In
psychology perhaps the best example is the diurnal rhythm of mood and energy. Energetic
arousal is typically low in the early morning, rises to a peak sometime between 12:00 and
16:00, and then decreases during the evening. Such rhythms can be described in terms of
their period and their phase. If the period of a rhythm is about 24 hours, it is said to be
circadian. The acrophase of a variable is that time of day when the variable reaches its
maximum. A great deal of research has shown that people differ in the time of day at which
they achieve their acrophase for variables ranging from cognitive performance (Revelle, 1993;
Revelle et al., 1980) to positive affect (Rafaeli et al., 2007; Thayer et al., 1988) (however, for
some measures, such as body temperature, the minimum is more precise measure of phase
than is the maximum (Baehr et al., 2000)). If we know the acrophase, we can use circular
statistics to find the mean and correlation of these variables with other circular variables
(3.4.1). The acrophase itself can be estimated using linear regression, not of the raw data
predicted by time of day, but rather by multiple regression using the sine and cosine of time
of day (expressed in radians).

Consider four different emotion variables, Energetic Arousal , Positive Affect , Tense
Arousal and Negative Affect . Assume that all four of these variable show a diurnal rhythm,
but differ in their phase (Figure 5.3). Consider the example data set created in Table 5.6.
Four curves are created (top panel of Figure 5.3) with different phases, but then have error
added to them (lower panel of Figure 5.3). The cosinor function estimates the phase angle
by fitting each variable with multiple regression where the predictors are cos(time ∗ 2π/24)
and sin(time ∗ 2π/24). The resulting β weights are then transformed into phase angles (in
radians) by

φ = tan−1(
−βsin

βcos
) =

βcos

β 2
cos +β 2

sin
.
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Table 5.5 Using the general linear model glm to do Poisson regression for the effect of an anti-seizure
drug on epilepsy attacks. The data are from the epil data set in MASS. Compare this analysis with
a simple linear model or with a linear model of the log transformed data. Note that the effect of the
drug in the linear model is not statistically different from zero, but is in the Poisson regression.

> data(epil)
> summary(glm(y~trt+base,data=epil,family=poisson))

Call:
glm(formula = y ~ trt + base, family = poisson, data = epil)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.6157 -1.5080 -0.4681 0.4374 12.4054

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.278079 0.040709 31.396 < 2e-16 ***
trtprogabide -0.223093 0.046309 -4.817 1.45e-06 ***
base 0.021754 0.000482 45.130 < 2e-16 ***
---
Signif. codes: 0 Ô***~O 0.001 Ô**~O 0.01 Ô*~O 0.05 Ô.~O 0.1 Ô ~O 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2517.83 on 235 degrees of freedom
Residual deviance: 987.27 on 233 degrees of freedom
AIC: 1759.2

Number of Fisher Scoring iterations: 5

> summary(lm(y~trt+base,data=epil))

lm(formula = y ~ trt + base, data = epil)

Residuals:
Min 1Q Median 3Q Max

-19.40019 -3.29228 0.02348 2.11521 58.88226

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.27396 0.96814 -2.349 0.0197 *
trtprogabide -0.91233 1.04514 -0.873 0.3836
base 0.35258 0.01958 18.003 <2e-16 ***
---
Signif. codes: 0 Ô***~O 0.001 Ô**~O 0.01 Ô*~O 0.05 Ô.~O 0.1 Ô ~O 1

Residual standard error: 8.017 on 233 degrees of freedom
Multiple R-squared: 0.582, Adjusted R-squared: 0.5784
F-statistic: 162.2 on 2 and 233 DF, p-value: < 2.2e-16
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This result may be transformed back to hours by phase = φ∗24
2π . Other packages that use

circular statistics are the circular and CircStats packages.

Table 5.6 Many emotional variables show a diurnal rhythm. Here four variables are simulated in their
pure form, and then contaminated by noise. Phase is estimated by the cosinor function.

> set.seed(42)
> nt = 4
> time <- seq(1:24)
> pure <- matrix(time,24,nt)
> pure <- cos((pure + col(pure)*nt)*pi/12)
> diurnal <- data.frame(time,pure)
> noisy <- pure + rnorm(24*nt)/2
> circadian <- data.frame(time,noisy)
> colnames(circadian) <- colnames(diurnal) <- c("Time", "NegA","TA","PA","EA")
> p <- cosinor(diurnal)
> n <- cosinor(circadian)
> round(data.frame(phase=p[,1],estimate=n[,1],fit=n[,2]),2)

> matplot(pure,type="l",xlab = "Time of Day",ylab="Intensity",
main="Hypothetical emotional curves",xaxp=c(0,24,8))
> matplot(noisy,type="l",xlab = "Time of Day",ylab="Arousal",
main="Noisy arousal curves",xaxp=c(0,24,8))

phase estimate fit
NegA 20 20.59 0.61
TA 16 16.38 0.76
PA 12 12.38 0.81
EA 8 8.26 0.84

5.4.4 Robust regression using M estimators

Robust techniques estimate relationships trying to correct for unusual data (outliers). A
number of packages include functions that apply robust techniques to estimate correlations,
covariances, and linear regressions. The MASS package, robust, robustbase all include ro-
bust estimation procedures. Consider the stackloss data set in the MASS package. A
pairs.panels plot of the data suggests that three cases are extreme outliers. The robust
linear regression function rlm shows a somewhat different pattern of estimates than does
ordinary regression.

An interesting demonstration of the power of the human eye to estimate relationships was
presented by Wainer and Thissen (1979) who show that visual displays are an important
part of the data analytic enterprise. Students shown figures representing various pure cases
of correlation were able to estimate the underlying correlation of contaminated data better
than many of the more classic robust estimates. This is an important message: Look at your
data!. Do not be misled by simple (or even complex) summary statistics. The power of the
eye to detect outliers, non-linearity, and just general errors can not be underestimated.
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Fig. 5.3 Some psychological variables have a diurnal rhythm. The phase of the rhythm may be
estimated using the cosinor function using multiple regression of the sine and cosine of the time of
day. The top panel shows four diurnal rhythms with acrophases of 8, 12, 16, and 20. The lower panel
plots the same data, but with random noise added to the signal. The corresponding phases estimated
using cosinor are 8.3, 12.4, 16.4 and 20.6.


