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Abstract
How to evaluate how well a psychological scale measures just one construct
is a recurring problem in assessment. We introduce an index, u, of the
unidimensionality and homogeneity of a scale. u is just the product of two
other indices: τ (a measure of τ equivalence) and ρc (a measure of congeneric
fit). By combining these two indices into one, we provide a simple index of
the unidimensionality and homogeneity of a scale. We evaluate u through
simulations and with real data sets. Simulations of u across one factor scales
ranging from 3 to 24 items with various levels of factor homogeneity show
that τ and therefore u are sensitive to the degree of factor homogeneity.
Additional tests with multifactorial scales representing 9, 18, 27, 36 items
with a hierarchical factor structure varying in a general factor loading show
that ρc and therefore u are sensitive to the general factor saturation of a
test. We also demonstrate the performance of u on 45 different publicly
available personality and ability measures. Comparisons with traditional
measures (i.e., ωh, α, ωt, CFI, ECV) show that u has greater sensitivity to
unidimensional structure and less sensitivity to the number of items in a
scale. u is easily calculated with open source statistical packages and is
relatively robust to sample sizes ranging from 100 to 5,000.
223 words, max 250

Public Significance

How to evaluate how well a psychological scale measures just one construct
is a recurring problem in assessment. We present an intuitively easy to
understand and easily calculated new index of scale quality, u, which com-
bines measures of scale unidimensionality and item homogeneity. Using open
source software on publicly available data sets we compare this index to con-
ventional measures. In multiple simulations we assess the utility of u. Across
12 levels of general factor saturation, four item levels, and samples sizes rang-
ing from 100 to 5,000, we show the utility of u as an index of scale quality.
We include the R code for our simulations and analysis of existing data sets.

Evaluating the dimensionality of a measure has been an ongoing challenge ever since Spear-
man (1904) introduced his factor model of intelligence. Today, it is widely recognized that the
majority of psychological tests — even those intended to measure only one construct — produce
a range of response pattern (that is, a degree of “higgledypiggledyness”, Walker, 1931, p 75) that
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is quite large. This has prompted the development of several techniques for assessing the unidi-
mensionality of scales. But, as pointed out by McDonald (1981) because unidimensionality holds
or does not hold, the proper question is not “is a test unidimensional”, but rather how well does
a unidimensional model fit the data. That is, we should ask if the fit of a one factor model is
“satisfactory”. Hattie (1985) reviewed and then evaluated (Hattie, 1984) 87 ways to assess unidi-
mensionality and stated that “Unidimensionality can be rigorously defined as the existence of one
latent trait underlying the set of items” (Hattie, 1985, p 152). Although a test with more than 3
items can never be truly unidimensional, the question becomes how to assess how close a test is to
unidimensionality (Ten Berge and Socan, 2004).

An important characteristic of unidimensionality — one that motivates our aim of assessing
it better — is that it represents a necessary condition for the meaningful application of Item
Response Theory (IRT) models. In the context of IRT, Stout (1990) introduced the concept of
essential dimensionality which he defined as follows:.

“Essential dimensionality, much in the spirit of counting the number of dimensions in a
factor analytic model, is the number of major latent dimensions with minor dimensions
ignored. Essential unidimensionality, the existence of exactly one major dimension,
then provides a justification for carrying out IRT based statistical analyses that require
unidimensionality." (Stout, 1990, 293).

While the procedure for estimating essential dimensionality suggested by Stout (1990) and imple-
mented with his colleagues (Nandakumar and Stout, 1993; Stout et al., 2001) requires very large
samples, their motivation is worth emphasizing, especially given recent increases in the use IRT in
psychological assessment (Thomas, 2019). Assessing the degree of unidimensionality is (or should
be) a necessary step in claiming that scores for any given scale reflect one underlying construct. If
a multi-item scale is not adequately unidimensional, then scores reflect the underlying construct
of interest as well as other, extraneous sources of variance. In these cases, the use of IRT is not
justified.

However, in the context of ability and personality measurement, even essential unidimen-
sionality seems not to be desired, as scales need to reflect the complexity of the constructs being
assessed (Tellegen, 1991; Tellegen and Waller, 2008) and scales need to “unidimensional enough"
(Embretson and Reise, 2025). Although resulting in single scale values, measures as complex as
the Stanford-Binet or the Wechsler Intelligence Scale for Children are clearly multidimensional, but
dominated by a single factor:

A test needs to measure a well defined construct, but the construct need not be at the
first order. Many useful test scores in education and psychology are at a higher order.
The composite score on the ACT Test reflects student performance in English, mathe-
matics, reading, and science. The general intelligence score of the Wechsler Intelligence
Scale for Children reflects performance in verbal comprehension, working memory, per-
ceptual reasoning, and processing speed. In the NEO-PI personality measure, each
domain (for example, extraversion) is composed of multiple facets (warmth, gregarious-
ness, assertiveness, excitement seeking, and positive emotions). (Davenport et al., 2015,
p 6)

We thank Richard Zinbarg for helpful comments on an earlier draft.
contact: William Revelle revelle@northwestern.edu
This a preprint version of October 2, 2024as submitted. It is currently under review.
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In this article, we suggest a combined index of unidimensionality and homogeneity, u, which
compares favorably to some of the current alternatives. u is both easy to understand and calcu-
late and it addresses the weaknesses of several popular alternatives (i.e., α, ωt, CFI, or Explained
Common Variance).3 Before explaining the derivation of u however, we first discuss the history
and shortcomings of these alternatives.

Extant Alternatives

To understand the challenge of evaluating unidimensionality, consider a multi-item scale
designed to measure a single construct (T) with inevitable random error (E). That is, each item
xi contributes construct-specific variance but is “befuddled by error” (McNemar, 1946, p 246). In
terms from classical test theory (Spearman, 1904; Lord and Novick, 1968; McDonald, 1999), this
may be represented as

xi = λiτ + ϵi (1)
with variances

σ2
i = λ2

i σ2
τ + σ2

ϵ (2)
where the λi reflect factor loadings of items on the construct and τ the construct “true score", and
ϵi random error.

The question of unidimensionality thus becomes one of assessing how well Equation 1 fits
the data. In the unlikely case that the λi are equal for all items and the variances of the ϵi are
all equal, the items are said to be parallel. That is, all items contribute equally with respect to
the construct measured by the scale. Similarly, subsets of the items from the scale would represent
parallel forms. If the λi are equal for all items but the variances of the ϵi are unequal, the items are
said to be τ equivalent. That is, each item has the same True score but different error variances.
If the λi are unequal (as is the typical case for most measures used in psychology), the items are
said to be congeneric. For parallel items, all the correlations and covariances among items will be
identical. For τ equivalent items, the covariances will be identical but the correlations will not.
For congeneric items, neither the covariances nor the correlations need to be identical. In all three
cases, the values of xi fit a one factor latent variable model (Lucke, 2005; McDonald, 1999).

The relationships among these values are often used to evaluate the internal consistency
of scales as an estimate of reliability as with, for example, Cronbach’s α (aka Guttman’s λ3)
(Cronbach, 1951; Guttman, 1945). For a scale (X) that is scored as the unit weighed sum of its
items (X = Σxi), internal consistency reliability is defined as the proportion of construct-specific
variance to total observed variance. That is, with the assumptions of Equation 2

ρxx = σ2
τ

σ2
X

.

Although most frequently used as an index of internal consistency reliability, α is sometimes used —
mistakenly, in our opinion — as a means of assessing unidimensionality as well. α is a particularly
poor measure because it assumes (without testing) the case of τ equivalence (Cronbach, 1951).
In other words, all of the items are presumed to have the same (true score) relationship to the
measured construct. This means α is just a function of the number of items (k) and the average
covariance of the items (σ̄ij):

α = σ2
X − Σσ2

i + kσ̄ij

σ2
X

= kσ̄ij

(σ̄2
i + (k − 1)σ̄ij)

= k

k − 1
σ2

X − Σσ2
i

σ2
X

. (3)

3We include α and ωt not because they are useful indices of uinidimensionality nor of homogeneity, but because
they are popularly misused as such.
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Before the introduction of modern computers, the advantage of α was that it could be calculated
from just the test variances (σ2

X) and the sum of the item variances (Σσ2
i ), and it did not require

finding the covariances and examining the internal structure of the test. This simplicity of calcu-
lation and subsequent introduction into popular proprietary software packages probably accounts
for the widespread use of α (Cho and Kim, 2015),

As an alternative to α, McDonald (1999) expanded equation 1 to account for the relationship
of any item to (multiple) group factors in addition to the general and specific/error terms4. Thus,
the observed score for a particular subject on an item is the sum of the products of factor scores
(g, f, s, e) and loadings (c, A, D) on these factors:

x = cg + Af + Ds + e. (4)

Assuming standardized general (g) and group factor (f) variances, then the total variance of a test
may be decomposed into that due to a general factor, to the sum of the group factors, to specific
(D) and error factors and will be

σ2
t = 1′cc′1 + 1′AA′1 + 1′DD′1 + 1′σ2

ϵ 1. (5)

Taking advantage of this extension of equation 1 to that of 4 McDonald (1999) introduced two
coefficients, both called ω to determine the amount of reliable variance in a test. Using notation
suggested by Zinbarg et al. (2005) the first coefficient, ωt, reflects the total amount of common
variance among the items while the second. ωh, reflects the amount due to the general factor

ωt = 1′cc′1 + 1′AA′1
σ2

X

. (6)

In that the communality of an item (h2
i ) is the sum of the squared factor loadings for that item, ωt

may be found by replacing the item variances (σ2
i ) with the amount of common variance (h2

i ) for
each item:

ωt = σ2
X − Σσ2

i + Σh2
i

σ2
X

. (7)

ωh is found by summing the loadings on the general factor and comparing the square of their sum
to the test variance:

ωh = (Σci)2

σ2
X

= 1′cc′1
σ2

X

. (8)

Although ωt may be found directly from the communalities of a factor analysis, ωh requires either a
hierarchical factoring of the original data followed by a subsequent Schmid-Leiman Transformation
(Schmid and Leiman, 1957) or by a bifactor solution (Holzinger and Swineford, 1937; Reise, 2012)
with a general factor and a number of group factors.

As ωh represents the proportion of general factor variance to total test variance, it directly
address the question of how well a one factor model fits the data. In addition, ωh avoids the
difficulty introduced by using ωt (the proportion of all common variance to total test variance)
as an estimate of unidimensionality. In cases where one or more subset(s) of items share group
variance that is not fully explained by variance on the general factor among all items, ωh will be a
smaller proportion than ωt and a much better estimate of unidimensionality. In addition, because
the relative contribution of the variance of a single item to the total variance decreases as the
number of items increases, the asymptotic value of ωh is

ωh∞ = 1′cc′1
1′cc′1 + 1′AA′1 = ωh

ωt
. (9)

4Specific and error are confounded unless using repeated measures to assess specific variance.
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Importantly, ωt reflects the total amount of common variance among the items rather than the
amount due to any single factor or dimension, and this limits its usefulness as a measure of uni-
dimensionality. The difficulty is that ωt does not indicate the extent to which items co-vary on
underlying dimensions beyond the primary or “general” factor.

In fact, α (Equation 3) and ωt (Equation 7) are similar in that both are the ratio of a
reduced variance σ2

X − δ to the total variance σ2
X (where δ = Σσ2

i − kσ̄ij for α or δ = Σσ2
i − Σh2

i

for ωt). Thus, in both cases, the numerator increases linearly by the number of items, but the
denominator by the square of the number of items. Importantly, both coefficients will increase
asymptotically to 1 as the number of items increases.

Although Revelle and Condon (2019) have previously recommended reporting ωh, α, and
ωt for all scales in order to estimate reliability and ωh for the amount of first factor saturation,
unfortunately ωh is not appropriate for very short scales. This is because ωh requires at least 2
(and preferably ≥ 3) factors in order to find a hierarchical solution or even a bifactor structure.
Since the degrees of freedom for a factor model with k factors and n variables is:

n(n − 1)
2 − nk + k(k − 1)

2
the minimum number of variables needed for a 2 factor model to be defined is 5. Note that this
case does not allow for a proper hierarchical solution using a Schmid-Leiman transformation for
ωh, as this requires 3 lower level factors (Zinbarg et al., 2006). The minimum number of variables
needed to properly estimate a hierarchical solution is 6. Thus, in the case of n ≤ 4 ωh = ωt.

Another index of the percent of general factor variance is Explained Common Variance
(ECV) which compares the amount of variance extracted by the first factor to the amount explained
by all factors (Rodriguez et al., 2016; Sijtsma, 2009; Ten Berge and Socan, 2004). ECV as discussed
by Ten Berge and Socan (2004) compares the size of the eigenvalues extracted using minimium rank
factor analysis (Shapiro and ten Berge, 2002; Ten Berge and Kiers, 1991). Sijtsma (2009) compares
ECV and α for multiple examples and shows where ECV does not changing while α ranges from
.2 to .9, as well as examples of α not varying and ECV varying from .33 to 1.0. It is important to
recognize that ECV just measures how large the first factor is compared to the remaining factors.
ECV is not an index of general factor variance, ωh will detect the absence of a general factor.

Yet one more way to test for unidimensionality is to ask how many factors best fit a scale.
If the best estimate is greater than one, clearly the scale is not unidimensional. However, the
number of factors problem is notoriously difficult (Horn and Engstrom, 1979) and variations on
the method of parallel analysis Horn (1965) have spawned a small industry (Lorenzo-Seva et al.,
2011; Revelle and Rocklin, 1979; Timmerman and Lorenzo-Seva, 2011; Velicer, 1976; Zwick and
Velicer, 1986). Even if these methods suggest one factor, the results may be misleading in terms of
the extent of unidimensionality. For example, a completely homogeneous scale of six items with all
correlations of .16 and and ECV of 1.00 (table 5 from Sijtsma, 2009) is seen as no different than
the six political items from Ten Berge and Socan (2004) with an ECV of .82. Both appear to be
one factor using parallel analysis with minimum rank factor analysis, but the latter is intuitively
much less unidimensional than the first.

In recent discussions of the relationship between α, internal consistency, and unidimen-
sionality, Davenport et al. (2015); Green and Yang (2015) consider how a test measuring a single
construct does not necessarily have to be unidimensional, if the construct itself is complex (e.g., the
ACT composite score, or the Wechsler Intelligence Scale for Children). Similar points have been
raised by Embretson and Reise (2025) and Tellegen (1991).

Here we introduce a very simple alternative index for unidimensionality — u, which may be
found using the unidim function in the psych package (Revelle, 2024a) in R (R Core Team, 2024)
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— and examine its properties using both simulated and real data.

Unidim: an index of unidimensionality

The logic is deceptively simple: Unidimensionality implies that a one factor model (λ) of
the data fits the covariances or the correlations of the data. If this is the case, then the factor
model implies that R = λλ′ + U2 will have residuals of 05. That is, that the observed correlations
will equal those of the factor model. To evaluate this, find the residuals of the observed covariances
minus the modeled covariances, sum the off-diagonal elements of these squared residuals (Fm =∑

i ̸=j(Rij − λiλ
′
j)2 ), and compare this to the sum of off-diagonal elements of the squared original

correlations (Fo =
∑

i ̸=j R2
ij). This is the measure of congeneric fit:

ρc = 1 − Fm

Fo
= Fo − Fm

Fo
.

When fitting a one factor model, ρc is a direct measure of the fit of a congeneric model to the
observed correlations/covariances.

A statistically more elegant estimate is that of the Compararative Fit Index (Bentler, 1990),
which compares a fit statistic (i.e., χ2) of the model less the expected value (Fm = χ2

m − dfm) to
that of the original data (Fo = χ2

o − dfo). Constraining both of the fits to be positive leads to the
CFI:

CFI = max(χ2
0 − df0, 0) − max(χ2

m − dfm, 0)
max(χ2

0 − df0, 0)
. (10)

Clearly ρc is a direct index of the fit of a model, whereas the CFI is a comparison of the fit
statistics. Although very similar in their values for data that are almost unidimensional we prefer
ρc for its performance across less unidimensional data sets and the lack of a need to specify sample
size. In the following tables and figures, we compare these two indices as well as a larger set of fit
statistics.

Although both the CFI and ρc can be large when some of the loadings are very small or
differ drastically in their magnitude, it is probably not a good idea to think of the items as forming
a useful scale. Thus, an alternative measure (the τ statistic) compares the observed correlations
(rij) to the mean correlation (r̄ij) and considers 1 - the ratio of the sum of the squared residuals
to the sum of the squared correlations:

τ = 1 −
∑

i ̸=j (rij − r̄ij)2∑
i ̸=j r2

ij

(11)

τ will achieve a maximum if the item correlations are all identical (a parallel test model, McDonald,
1999). Indeed, for dichotomous data, given the equivalence of factor analytic models using tetra-
choric correlations and weighted least squares, with 2PL IRT models (Kamata and Bauer, 2008;
Takane and de Leeuw, 1987), the Rasch (1966) model — a one parameter IRT model with the
assumption that all items have equally good discrimination — is functionally a τ equivalent model.

We define the product of ρc and τ as our measure of unidimensionality, u.6 That is,
congeneric fit x tau equivalent fit as a measure of unidimensionality. In the following tables, we
show how u behaves in various simulations as well as with real data. We also show the behavior
of the u statistic as a function of sample size and compare it with CFI and ECV as a function of
sample size (Figure 1). These demonstrations use the functions unidim and omega as implemented
in the psych package (Revelle, 2024a) for the open source statistical system R (R Core Team, 2024).
Output from both functions is also shown in the reliability function.

5Although we show this for correlation matrices this also works for the more general covariance matrix.
6Thus, the square root of u is just the geometric mean of τ and ρc.
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Tests with simulations

In the following two sections, we examine 16 one factor models, four two factor models as
well as 48 hierarchical models with varying levels of a general factor. To show the robustness of
our results, we simulate each of these models 100 times with four levels of simulated sample size.

To demonstrate the unidim function on unidimensional data, we simulated four one-factor
models for 3, 6, 12 and 24 items. Loadings for each model were specified for a three-item model
as large (.7, .6, .5), medium (.6, .5, .4), small (.5, .4, .3), or mixed ( .7, .5, .3) loadings. To
form 6, 12, or 24 item structure, the basic loadings were repeated 2, 4, and 8 times. We used
the sim and sim.minor functions to generate the data. Both functions generate a latent variable
model by multiplying the factor loading matrix by a matrix of random normal deviates and then
adding normally distributed error. sim.minor follows the advice of MacCallum and Tucker (1991)
who distinguished between the factor model we want (pure factors) and a generating model of pure
factors with a number of smaller, nuisance factors. (For further examples of large and small factors,
see Lorenzo-Seva et al., 2011; Timmerman and Lorenzo-Seva, 2011). In order to be able to analyze
the actual raw scores, simulations were not done using the procedure of Tucker et al. (1969) which
generates sample correlation matrices but rather by generating factor scores plus error following
techniques similar to those of Timmerman and Lorenzo-Seva (2011).

Varying factor loadings of a one dimensional model

For ease of simulation, we formed data based upon the first four columns (pure) or all eight
columns (minor) of Table 2. By partitioning the resulting correlation matrix appropriately, we are
thus able to generate 16 different one-factor models. We show loadings for each of the models.
The first set (column 1) contain large loadings (.7, .6, .5), the second medium (.6, .5, .4) loadings,
and the third small (.5, .4, .3) loadings. The fourth column shows mixed loadings of .7, .5, and .3.
The final four columns were used when generating minor factors, with loadings of ±.2 randomly
assigned to variables. The partitioning of the overall 96 x 96 correlation matrix resulted in e.g., a 3
x 3 correlation matrix with large loadings (R[1:3,1:3], medium loadings (R[4:6;4:6], or a 6 x 6 with
mixed loadings (R[c(10:12,22:24), c(10:12,22:24)]), etc.

Table 1

Four simulated loadings matrices. For each model, one of the first 4 columns was combined with
columns 5-8. The loadings represent large, medium and small loadings, as well as a mixed set.
The minor factors had loadings of ±.2 for four nuisance factors. To simulate an (e.g.) six item
problem with medium loadings, the first six rows of the second and 5-8th columns were used.

Item large middle small mixed m1 m2 m3 m4
1 0.7 0.6 0.5 0.7 0.0 0.0 0.2 -0.2
2 0.6 0.5 0.4 0.5 0.0 0.2 0.0 0.0
3 0.5 0.4 0.3 0.3 -0.2 0.0 0.0 0.2
4 0.7 0.6 0.5 0.7 0.2 0.2 0.2 0.2
5 0.6 0.5 0.4 0.5 0.0 -0.2 0.0 0.0
6 0.5 0.4 0.3 0.3 0.0 0.2 0.0 0.2

... ... ... ..
22 0.7 0.6 0.5 0.7 -0.2 0.0 -0.2 0.2
23 0.6 0.5 0.4 0.5 0.0 0.0 0.2 -0.2
24 0.5 0.4 0.3 0.3 -0.2 0.0 0.0 0.0

Data were generated for 500 simulated subjects using both the “pure” (just one of the first
four columns) and the “noisy” (one + four minor factors) model. Solutions for 3, 6, 12, and 24
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Table 2

The simulated loadings matrix. Rows 1-12 were repeated 8 times to generate the 96 item loadings.
The loadings represent large, medium and small loadings, as well as a mixed set. The minor
factors had loadings of ±.2 for four nuisance factors. The resulting 96* 96 correlation matrix is
then partitioned into unifactorial subsets. (E.g., R[1:3,1:3] represents the correlation matrix of 3
items with large correlations, R[4:6,4:6] the medium sized correlation matrix.

Variable Large Medium Small Mixed m1 m2 m3 m4
V1 0.7 0.0 0.0 0.0 0.0 0.0 0.2 -0.2
V2 0.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0
V3 0.5 0.0 0.0 0.0 -0.2 0.0 0.0 0.2
V4 0.0 0.6 0.0 0.0 0.2 0.2 0.2 0.2
V5 0.0 0.5 0.0 0.0 0.0 -0.2 0.0 0.0
V6 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.2
V7 0.0 0.0 0.5 0.0 0.2 0.2 0.0 0.0
V8 0.0 0.0 0.4 0.0 -0.2 0.0 -0.2 0.2
V9 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.2
V10 0.0 0.0 0.0 0.7 -0.2 0.0 0.2 0.0
V11 0.0 0.0 0.0 0.5 0.0 0.0 0.2 -0.2
V12 0.0 0.0 0.0 0.3 -0.2 0.0 0.0 0.0

... ... ... ... ... ... ... ...
V85 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0
V86 0.6 0.0 0.0 0.0 0.0 0.0 0.0 -0.2
V87 0.5 0.0 0.0 0.0 0.2 0.2 0.0 0.0
V88 0.0 0.6 0.0 0.0 -0.2 0.2 0.0 0.0
V89 0.0 0.5 0.0 0.0 -0.2 0.0 0.0 0.2
V90 0.0 0.4 0.0 0.0 0.2 0.0 -0.2 -0.2
V91 0.0 0.0 0.5 0.0 0.0 0.0 0.2 -0.2
V92 0.0 0.0 0.4 0.0 -0.2 0.0 0.0 0.0
V93 0.0 0.0 0.3 0.0 0.2 -0.2 0.2 0.0
V94 0.0 0.0 0.0 0.7 0.0 0.2 0.2 0.0
V95 0.0 0.0 0.0 0.5 0.0 0.2 0.0 0.0
V96 0.0 0.0 0.0 0.3 0.0 0.0 -0.2 0.2

items per scale for 500 simulated participants are shown for pure factors in Table 3 and for noisy
data in Table 4. The last four rows reflect scales formed from the first and second factors for 6, 10,
12, and 24 items7. These are clearly not unidimensional. Simulations were done with continuous
data as well as six alternative categorical data (simulating items–Table 5). Several things to note
in these tables: Following the Spearman-Brown equation (Brown, 1910; Spearman, 1910), α and ωt

increase with the number of items in the scale. Neither statistic flags the scales formed from two
orthogonal factors as poor fits. Because a hierarchical model is not identified for three item scales,
ωh was forced to a one factor solution for those scales but properly identifies the last four scales as
having low values for general factor saturation. The behavior of the u statistic is very gratifying, in
that it does not increase with the number of items per scale, varies as a function of the the range
of loadings, and correctly identifies the last four scales as non-unidimensional. For these examples,
the performance of the CFI and ECV statistics showed similar patterns: high for unidimensional
scales, lower for multidimensional scales. This is in striking contrast to ωt or α which show very
“reasonable” values for these non-unidimensional scales.

7Because we also are finding split half estimates, we limited our examples to 24 items to allow for finding all split
half values from the 2,704,156 possible splits.
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Sensitivity to sample size

For practical purposes, we addressed the question of the effect of sample size on the u
statistic. We simulated 200, 500, 1,000 and 5,000 participants using the factor structure shown in
Table 2. For each simulation we performed 100 replications. We also examined the effect of sample
size on ωt, CFI and ECV. It is quite clear (Figure 1) that even for samples as small as 100, the
u statistic could distinguish between unidimensional scales versus multidimensional scales. The
pattern of results show that u is, in contrast to ωt, not sensitive to the number of items in the scale,
but is sensitive to unidimensionality. This is evident from comparisons of the first 16 to the last
four columns of each panel. The CFI statistic was not sensitive to sample size nor range of factor
loadings for one factor data but did drop when given two factor data. The ECV was sensitive to
sample size, increasing with larger samples, and to factor structure (decreasing from factors with
large to medium to low loadings). In contrast to u, with the exception of 3 item scales, ECV was
sensitive to the number of items per factor, increasing from 6 to 12 to 24.

But what if the data are not unidimensional?

Our prior demonstrations examined various fit statistics for one factor models with various
number of items and size and range of factor loadings. But what if the data are intentionally mul-
tidimensional? Ability measures typically are thought to represent a factor hierarchy of correlated

Table 3

Various estimates of unidimensionality and reliability for 500 simulated participants for scales
formed from 3, 6, 12, and 24 items with factor loadings as specified in Table 2. The last four rows
report results for scales formed from two orthogonal subscales. u is the unidimensionality statistic,
τ and ρC are the τ and congeneric fits, ωh and ωt are the two omega statistics, α is the
traditional estimate. Max split and min split represent the maximum and minimum split half
reliabilities found by complete sampling of all Ck

k/2 possible split half coefficients. r̄ reports the
mean correlation in the scale. Median r is just the median correlation among the items. CFI is
the comparative fit index, ECV is the Explained Common Variance.

Model u τ ρC ωh α ωt Max Min r̄ Median CFI ECV N
Split Split r Items

high.3 0.99 0.99 1.00 0.61 0.61 0.61 0.58 0.52 0.34 0.36 1.00 0.98 3
med.3 0.99 0.99 1.00 0.54 0.54 0.54 0.50 0.45 0.28 0.28 1.00 0.98 3
low.3 0.97 0.97 1.00 0.34 0.33 0.34 0.32 0.26 0.14 0.14 1.00 0.97 3
mixed.3 0.92 0.92 1.00 0.45 0.44 0.45 0.44 0.31 0.21 0.18 1.00 0.97 3
high.6 0.96 0.96 0.99 0.69 0.76 0.78 0.78 0.73 0.35 0.33 0.99 0.74 6
med.6 0.91 0.92 0.99 0.41 0.67 0.74 0.70 0.65 0.26 0.26 1.00 0.73 6
low.6 0.85 0.88 0.97 0.21 0.52 0.62 0.56 0.47 0.15 0.15 1.00 0.69 6
mixed.6 0.73 0.74 0.98 0.26 0.61 0.71 0.66 0.55 0.21 0.18 0.99 0.55 6
high.12 0.94 0.95 0.99 0.76 0.87 0.87 0.89 0.84 0.35 0.35 0.99 0.90 12
med.12 0.88 0.90 0.98 0.38 0.78 0.81 0.82 0.75 0.23 0.23 0.97 0.74 12
low.12 0.78 0.83 0.94 0.48 0.66 0.68 0.71 0.57 0.14 0.14 0.99 0.76 12
mixed.12 0.77 0.78 0.98 0.26 0.77 0.81 0.82 0.71 0.22 0.20 0.99 0.73 12
high.24 0.95 0.95 1.00 0.11 0.93 0.93 0.95 0.92 0.36 0.35 1.00 0.93 24
med.24 0.90 0.92 0.98 0.64 0.88 0.88 0.91 0.85 0.23 0.23 0.99 0.88 24
low.24 0.81 0.85 0.95 0.66 0.82 0.82 0.86 0.77 0.16 0.16 0.99 0.84 24
mixed.24 0.78 0.79 0.98 0.36 0.88 0.89 0.91 0.82 0.24 0.21 0.99 0.90 24
F2.6 0.32 0.50 0.63 0.11 0.50 0.61 0.59 0.12 0.14 0.07 0.61 0.54 6
F2.10 0.30 0.49 0.62 0.07 0.66 0.73 0.75 0.09 0.16 0.06 0.61 0.46 10
F2.12 0.12 0.19 0.63 0.05 0.62 0.73 0.73 0.09 0.12 0.05 0.62 0.50 12
F2.24 0.23 0.34 0.68 0.08 0.79 0.84 0.87 0.32 0.14 0.07 0.65 0.58 24
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Table 4

Various estimates of unidimensionality and internal consistency for 500 simulated participants for
scales formed from 3, 6, 12, and 24 items with major and minor factor loadings as specified in
Table 2. The last four rows report results for scales formed from two orthogonal subscales.
Column headings are the same as in Table 3. The addition of a small amount of noise makes very
little difference (compare with Table 3).

Model u τ ρC ωh α ωt Max Min r̄ Median CFI ECV N
Split Split r Items

high.3 0.98 0.98 1.00 0.59 0.58 0.59 0.56 0.47 0.32 0.30 1.00 0.98 3
med.3 0.99 0.99 1.00 0.53 0.53 0.53 0.51 0.44 0.27 0.29 1.00 0.97 3
low.3 0.90 0.90 1.00 0.43 0.39 0.43 0.43 0.28 0.18 0.19 1.00 0.91 3
mixed.3 0.91 0.91 1.00 0.54 0.52 0.54 0.53 0.36 0.27 0.22 1.00 0.98 3
high.6 0.93 0.93 1.00 0.43 0.76 0.82 0.78 0.74 0.35 0.34 1.00 0.74 6
med.6 0.92 0.94 0.97 0.55 0.67 0.70 0.71 0.61 0.26 0.24 0.96 0.76 6
low.6 0.82 0.84 0.97 0.39 0.54 0.62 0.59 0.47 0.16 0.15 0.99 0.61 6
mixed.6 0.80 0.81 0.99 0.56 0.68 0.72 0.71 0.61 0.26 0.22 0.99 0.79 6
high.12 0.93 0.94 0.99 0.65 0.86 0.87 0.89 0.83 0.34 0.34 0.97 0.88 12
med.12 0.91 0.94 0.97 0.66 0.80 0.81 0.84 0.74 0.25 0.25 0.94 0.81 12
low.12 0.79 0.84 0.95 0.49 0.69 0.70 0.75 0.61 0.16 0.16 0.96 0.77 12
mixed.12 0.81 0.83 0.99 0.30 0.81 0.83 0.85 0.72 0.26 0.23 0.99 0.75 12
high.24 0.93 0.94 0.99 0.60 0.92 0.93 0.95 0.89 0.34 0.34 0.95 0.89 24
med.24 0.89 0.91 0.97 0.64 0.89 0.89 0.92 0.83 0.25 0.25 0.95 0.86 24
low.24 0.77 0.83 0.93 0.58 0.82 0.83 0.87 0.74 0.16 0.16 0.90 0.79 24
mixed.24 0.80 0.82 0.98 0.67 0.89 0.90 0.92 0.82 0.26 0.23 0.98 0.86 24
F2.6 0.06 0.11 0.57 0.02 0.46 0.56 0.56 0.03 0.12 0.05 0.57 0.52 6
F2.10 0.30 0.48 0.63 0.07 0.65 0.73 0.76 0.09 0.16 0.09 0.62 0.52 10
F2.12 0.31 0.47 0.64 0.07 0.68 0.74 0.77 0.10 0.15 0.10 0.63 0.53 12
F2.24 0.30 0.47 0.62 0.06 0.81 0.84 0.88 0.29 0.15 0.11 0.58 0.53 24

Table 5

Comparing unidim (u) estimates for continuous and item (categorical) data for pure and minor
simulated factors. The categorical data were generated with six categories using the sim and
sim.minor functions in psych.

Model pure continuous pure categorical minor continuous minor categorical
high.3 0.99 0.98 0.98 0.97
med.3 0.99 0.97 0.99 0.96
low.3 0.97 0.83 0.90 0.94
mixed.3 0.92 0.87 0.91 0.86
high.6 0.96 0.96 0.93 0.94
med.6 0.91 0.95 0.92 0.95
low.6 0.85 0.84 0.82 0.81
mixed.6 0.73 0.84 0.80 0.76
high.12 0.94 0.94 0.93 0.93
med.12 0.88 0.92 0.91 0.93
low.12 0.78 0.79 0.79 0.83
mixed.12 0.77 0.81 0.81 0.73
high.24 0.95 0.95 0.93 0.94
med.24 0.90 0.90 0.89 0.91
low.24 0.81 0.79 0.77 0.82
mixed.24 0.78 0.80 0.80 0.74
F2.6 0.32 0.06 0.06 0.32
F2.10 0.30 0.09 0.30 0.27
F2.12 0.12 0.10 0.31 0.28
F2.24 0.23 0.22 0.30 0.31
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A)  ωt varies by sample size and factor loadings
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B) U varies by sample size and factor loadings
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 C) CFI is not very sensitive to variations in factor loadings
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 D) ECV varies by sample size and factor loadings

E
C
V

hi
gh
.3

m
ed
.3

lo
w
.3

m
ix
ed
.3

hi
gh
.6

m
ed
.6

lo
w
.6

m
ix
ed
.6

hi
gh
.1
2

m
ed
.1
2

lo
w
.1
2

m
ix
ed
.1
2

hi
gh
.2
4

m
ed
.2
4

lo
w
.2
4

m
ix
ed
.2
4

F2
.6

F2
.1
0

F2
.1
2

F2
.2
4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5000
1000
500
200

Figure 1

The ωt, u, CFI and ECV statistics behave very differently across the number of items per factor
and sample size. Panel A shows how ωt increases with the number of items/factor and varies by the
size of the factor loadings. It is relatively insensitive to the non-unidimensionality of scales formed
from multiple factors and to sample size. Panel B shows how the u statistic does not increase
with the number of items per scale, is sensitive to the the size of the factor loadings, and is very
sensitive to the degree of non-unidimensionality (the four right hand observations in both panels).
Panel C shows that the CFI varies only slightly by sample or range of factor loadings. Panel D
shows that ECV varies by sample size and factor loadings. Sample sizes in all panels range from
200 (black) to 500, 1000, and 5000 (green) simulated participants. The cats-eyes shapes display
standard deviations of 100 replications for each sample size.
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lower order (group) factors with a higher level ‘g’ factor (Jensen and Weng, 1994). Indeed, mea-
sures of general ability are not meant to be purely unidimensional (Humphreys, 1994; Nandakumar,
1991). Similarly, measures of higher order personality scales (e.g., extraversion or neuroticism) are
typically not meant to be truly unidimensional, but to include related lower level constructs (Tel-
legen and Waller, 2008). Variously known as Factorially Homogeneous Item Dimensions or FHIDs
(Comrey, 1984) or Homogeneous Item Composites or HICs (Hogan and Hogan, 2007), these lower
level constructs may be formed into higher level scales. Structural analysis includes bi-factor solu-
tions (Reise et al., 2007), (Reise et al., 2018) taking advantage of the bifactor model of Holzinger
and Swineford (1937) (see also, Holzinger and Swineford, 1939) as well as the Schmid and Leiman
(1957) higher level model. All of these approaches are intentionally multidimensional but the
resulting scores tend to be interpreted as one higher order construct.

Jensen and Weng (1994) give a nice example of a higher level (g) factor arising from the
composite of three lower level factors. Given a three factor model for nine items with loadings as
shown in Table 6 (part A), and factor loadings on ‘g’ of .9, .8 and .7 result in factor correlations
of .72 , .63 and .56. The 9 x 9 correlation matrix may be solved using a higher order solution or
rotated using the Schmid and Leiman (1957) oblique factor solution to produce the factor solution
shown in part B of Table 6. The u statistic for this set of 9 items is .84, with ωh of .69 and CFI of
.93.

This model was extended to the case of 18, 27, and 36 items by duplicating the loadings
shown in Table 6 two, three or four times. To examine the effect of factor structure, factor intercor-
relations, and sample size, the higher order loadings were set by specifying identical higher order
loadings varying from 0 to 1. Data were generated for 100, 200, 500, and 1000 simulated cases with
minor noise factors (MacCallum et al., 2007; MacCallum and Tucker, 1991) with random loadings
of -.2 , 0, or .2. The data for 9, 18, 27, and 36 items were generated, with either continuous or
categorical items (with five categories). In the categorical case, polychoric correlations were found
although we did not expect much effect of the categorical versus continuous distinction (Rhemtulla
et al., 2012). Results for the u, ωh and CFI statistics are shown as a function of the number of
items (9, 18, 27, 36) and the general factor loading for both the continuous and categorical cases
(Figure 2). Figure 3 show the effects of sample size (100, 200, 500, 1000) on these estimates. To
examine the extent these these results generalize across the size of group factors we redid these
analyses with smaller group factors (loadings of .6, .5 and .4) for the case of categorical variables
(Figure 4) and sample size (Figure 5).

Inspecting these four figures, it is clear that all three measures are sensitive to the g loading,
with the u statistic being less sensitive to the number of items and whether they are continuous or
categorical. Although both u and ωh varied across the entire range of g loadings, the CFI estimate
was not sensitive to variations in g loadings less than .5. That is, for rejecting unidiminsionality (g
< .9 all three statistics did a good job, but CFI was not good index of poor fit.

A reviewer asked why we bother to introduce a new estimate of unidimensionality when
we already have perfectly good ways of detecting whether a single factor fits the data? In a
comparison of five procedures for estimating the optimal number of factors to extract Zwick and
Velicer (1986) show that two are far better than the others. Emphasizing Principal Components,
the Minimum Average Partial correlation test (MAP Velicer, 1976; Zwick and Velicer, 1986) finds
the number of components that minimize the average squared partial correlation of the residual
matrix when partialling out the first n components. Parallel Analysis (PA, Horn, 1965; Humphreys
and Montanelli, 1975) compares factors/components of a sample to those of random samples of the
same number of variables and subjects and identifies the number of factors/components to those
with eigen values of the observed sample greater than those of a random samples. In Figure 6 we
compare MAP, PA for components, and PA for factors for 100 replications of our hierarchical data
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(A) u ~ g loading and number of items
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(B) u ~ g loading and sample size
 Continuous data 
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(C) Omega_h ~ g loading and number of items
 Continuous data 
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(D) Omega_h ~ g loading and number of items
 Categorical data 
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(E)  CFI ~ g loading and number of items
Continuous data

 g loading

C
FI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

9
18
27
36

(F)  CFI ~ g loading and number of items
 Categorical data
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Figure 2

Unidim, ωh, and CFI as functions of general factor loading (0 ... 1), number of items (9, 18,
27, 36) and type of data (continuous versus 5 level categorical). Left hand panel shows fits as
function of number of items and g loadings for continuous data, right hand panel shows the effect
of categorical data.. All models are include minor noise factors. Simulated sample sizes range for
100 to 1000 cases (see Figure 3). “Cats eyes" show the 95% confidence of the 100 simulations for
each condition.
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U ~ g loading and number of observations
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U ~ g loading and number of observations
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omega_h ~ g loading and number of observations
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omega_h ~ g loading and number of observations
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CFI ~ g loading and number of observations

g
n.obs

C
FI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100
200
500
1000

CFI ~ g loading and number of observations
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Figure 3

Unidim, ωh, and CFI as functions of general factor loading and simulated sample size. Left hand
panel shows continuous data, right hand panel shows categorical data. All models include minor
noise factors. “Cats eyes" show the 95% confidence of the 100 simulations for each condition.
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(A) u ~ g loading and number of items
Small group factor loadings
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(B) u ~ g loading and number of items
Large group factor loadings
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(C) omega_h ~ g loading and number of items
Small group factor loadings
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(D) omega_h ~ g loading and number of items
Large group factor loadings
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(E)  CFI ~ g loading and number of items
Small group factor loadings
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(F)  CFI ~ g loading and number of items
Large group factor loadings
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Figure 4

Unidim, ωh, and CFI as functions of general factor loading and the total number of items (9, 18,
27, 36). Left hand panel shows low group factor loadings, right hand panel shows larger group
factors loadings. All data are categorical and include minor noise factors. “Cats eyes" show the
95% confidence of the 100 simulations for each condition.
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(A)u ~ g loading and number of observations
Small group factors
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(B) u ~ g loading and number of observations
Large group factors
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(C) omega_h ~ g loading and number of observations
Small group factors
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(D) omega_h ~ g loading and number of observations
Large group factors
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(E) CFI ~ g loading and number of observations
Small group factors
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(F) CFI ~ g loading and number of observations
Large group factors
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Figure 5

Unidim, ωh, and CFI as functions of general factor loading and sample size (100, 200, 500, 1000).
Left hand panel shows low group factor loadings, right hand panel shows larger group factors load-
ings. All data are categorical and include small noise factors. “Cats eyes" show the 95% confidence
of the 100 simulations for each condition.
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Table 6

Three factors with loadings for 9 items have g loadings as specified in the last row (part A). These
may be transformed to a bifactor solution (part B). U = .84, ωh = .69, CFI = .93. A similar set of
factors (F1, F2, F3) are then duplicated two, three or four times and the g loadings are set to be
all 0, all .1, ... all 1.0, to create the results shown in Figure 3)

Part A Part B
Variable F1 F2 F3 g F1* F2* F3* h2 u2 p2 com
V1 0.80 0.00 0.00 0.72 0.35 0.00 0.00 0.64 0.36 0.81 1.44
V2 0.70 0.00 0.00 0.63 0.31 0.00 0.00 0.49 0.51 0.81 1.44
V3 0.60 0.00 0.00 0.54 0.26 0.00 0.00 0.36 0.64 0.81 1.44
V4 0.00 0.70 0.00 0.56 0.00 0.42 0.00 0.49 0.51 0.64 1.85
V5 0.00 0.60 0.00 0.48 0.00 0.36 0.00 0.36 0.64 0.64 1.85
V6 0.00 0.50 0.00 0.40 0.00 0.30 0.00 0.25 0.75 0.64 1.85
V7 0.00 0.00 0.60 0.42 0.00 0.00 0.43 0.36 0.64 0.49 2.00
V8 0.00 0.00 0.50 0.35 0.00 0.00 0.36 0.25 0.75 0.49 2.00
V9 0.00 0.00 0.40 0.28 0.00 0.00 0.29 0.16 0.84 0.49 2.00
g 0.90 0.80 0.70

problem with 12 levels of general factor saturation, four levels of the number of items, and four
sample sizes. All three procedures suggest one factor with g values of 1.0, and three factors for g
values of < .5 but are not as clear for g values between .6 and .9. Compare these curves to those
showing u and CFI with values for the same range of g values in figures 2-5. Unlike u or the CFI,
MAP and PA are very sensitive to the number of items in the scale. MAP and PA give different
answers for 9 or 18 items as a function of the g loadings in the range from .7 to .9. In fact for 9
items MAP suggests one or slightly more the one factor across the entire g range.

Applying unidim to real data

The simulations were done with continuous and categorical item scores with known (simu-
lated) structure. However, most real ability and personality items are categorical and the structures
are assumed rather than known. unidim can be applied to such data using either tetrachoric or
more generally polychoric correlations. In addition to showing results with simulated continuous
and categorical data (Table 5, Figures 2, 3) we show the utility of the u statistic with real categorical
data from three data sets available in the psychTools package (Revelle, 2024b) for the R statistical
system. For reasons discussed in Chalmers (2017) and Revelle and Condon (2019), conventional
reliability indices were found using Pearson correlations. However, the unidimensional estimates
were found from factoring the tetrachoric or polychoric correlation matrices.

Of these data sets, the first, the ability data set includes 16 items for 1,525 participants
from the International Cognitive Ability Resource (Condon and Revelle, 2014), which represents 4
lower level factors and one higher level factor (Table 7 part 1). The items are dichotomous. The
second dataset, bfi, contains data from 2,800 participants who responded to 25 Likert-like items
with six response choices ranging from “very inaccurate” to “very accurate.” Although normally
scored using only five separate constructs (the familiar Big Five traits shown in Table 7 part
2), composite scales were also formed here, for demonstration purposes, from two (E+O), three
(A+C+N) or five (all) of these constructs. This is a particularly nice example of the advantage
of the u statistic as contrasted with the more conventional α and ωt statistics, for the latter show
quite reasonable values (.71 - .84) for scales that are not unidimensional. u and ωh on the other
hand, show clear evidence (.30 - .41) for multidimensionality (Table 7 part 3). What is interesting
is that for these nominally unifactorial scales, the CFI and ECV statistics were quite low. The
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ECVs for the single construct bfi scales ranged from .79 to .87, values, while the CFIs ranged from
.90 to .97 which, although larger than for the multi-construct scales (.52 - .61 for ECV, .40 - .64
for CFI), do not suggest strong unidimensionality.

The third dataset uses the 135 items of the SAPA Personality Inventory (Condon, 2018)
for 4,000 participants (spi) to form 27 lower level scales; these also had six response options (“very
inaccurate” to “very accurate”) (Table 8). In this case, the u values for the SPI-27 reflect the
higher degree of unidimensionality expected from brief 5-item scales with a median of .94 and
ranging from .83 to .99. By contrast, α values are relatively lower (again, as expected, given
the short scale lengths), and the ωh values are difficult to interpret due to inadequate degrees of
freedom. In contrast to the findings with the bfi scales, these 27 scales show higher levels of ECV
with a median of .91 and ranging from .77 to .96.

Table 7

Unidim coefficients and multiple reliability measures for the ability data set with 16 items and
1,525 participants and the bfi data set with 2,800 participants for 25 items. The first three
columns report unidim statistics u, τ , ρc, the next three columns the conventional ωh, α, and ωt

internal consistency estimates, and the next two report the maximum and minimum split half
reliabilities based upon a split half decomposition of the scales. The next two columns (r̄ and
Median r) are the mean and median within scale correlations, respectively. The last three columns
are the CFI and ECV, followed by the number of items per scale. The ICAR16 represents a
higher order factor composed of four lower level factors. Although the bfi is scored as five
unidimensional constructs, the last three lines represent scales formed from two (E+O), three
(A+C+N) or five (all) constructs. For the latter three scales, note how the high value of α and ωt

conflict with low values of u and ωh which are better indicators of unidimensionality.

Data set u τ ρC ωh α ωt Max Min Mean Median CFI ECV N
Scale Split Split r r Items
ICAR dataset
ICAR16 0.90 0.93 0.96 0.56 0.83 0.85 0.87 0.73 0.23 0.21 0.76 0.78 16
reasoning 0.98 0.98 1.00 0.05 0.65 0.65 0.65 0.64 0.31 0.31 1.00 0.99 4
letters 0.99 0.99 1.00 0.65 0.67 0.68 0.68 0.66 0.34 0.33 1.00 0.98 4
matrix 0.93 0.95 0.98 0.37 0.54 0.59 0.58 0.49 0.23 0.22 0.95 0.83 4
rotate 1.00 1.00 1.00 0.71 0.77 0.78 0.78 0.74 0.45 0.44 0.99 0.96 4
bfi dataset: single construct scales
extraversion 0.96 0.97 0.99 0.55 0.76 0.82 0.78 0.66 0.39 0.38 0.97 0.86 5
openness 0.89 0.91 0.98 0.39 0.61 0.70 0.66 0.52 0.24 0.23 0.94 0.79 5
agreeableness 0.90 0.91 0.99 0.64 0.71 0.75 0.75 0.62 0.33 0.34 0.96 0.86 5
conscientious 0.95 0.97 0.98 0.53 0.73 0.77 0.74 0.64 0.35 0.34 0.93 0.84 5
neuroticism 0.94 0.95 0.98 0.71 0.81 0.85 0.83 0.69 0.47 0.41 0.90 0.87 5
bfi multi construct scales
EO 0.49 0.62 0.79 0.36 0.71 0.77 0.79 0.38 0.20 0.21 0.64 0.61 10
ACN 0.43 0.63 0.68 0.33 0.78 0.81 0.87 0.47 0.19 0.14 0.44 0.52 15
All 0.38 0.56 0.68 0.30 0.82 0.84 0.89 0.58 0.15 0.13 0.40 0.56 25

Comparison of fit statistics

A reasonable question to ask is what is the relationship between these various estimates
of unidimensionality? As one reviewer questioned, is our ρc measure any different from ECV?
Conceptually our proposed measure, u, based upon the product of τ and ρc would seem to be
similar to the goodness of fit of a one factor model (CFI) or the Explained Common Variance. To
address this question, we report the correlations of these and additional measures (Table 9) for the
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Table 8

Unidim coeffficients and multiple reliability measures of the spi-135 (Condon, 2018). The SAPA
Personality Inventory (Condon, 2018) has five higher order scales assessing the “Big Five” and
27 lower level scales assessing other aspects of personality. The 27 lower level measures have 5
items each. The spi data set in the psychTools has 4,000 observations on these 135 items plus 10
criteria/demographic variables. The columns are the same as in Table 7.

Model u τ ρC ωh α ωt Max Min Mean Median CFI ECV N
Split Split r r Items

Compassion 0.99 0.99 1.00 0.80 0.88 0.89 0.87 0.82 0.59 0.58 0.99 0.94 5
Trust 0.99 0.99 1.00 0.80 0.87 0.89 0.87 0.81 0.58 0.58 0.98 0.94 5
Honesty 0.96 0.97 0.99 0.71 0.81 0.84 0.83 0.70 0.46 0.46 0.94 0.88 5
Conservatism 0.84 0.91 0.92 0.56 0.78 0.85 0.84 0.61 0.41 0.35 0.66 0.76 5
Authoritarianism 0.89 0.93 0.96 0.63 0.81 0.86 0.85 0.63 0.46 0.46 0.83 0.81 5
EasyGoingness 0.90 0.92 0.98 0.45 0.68 0.76 0.73 0.58 0.29 0.29 0.94 0.78 5
Perfectionism 0.83 0.84 0.99 0.34 0.70 0.74 0.72 0.53 0.31 0.33 0.97 0.87 5
Order 0.93 0.94 0.99 0.62 0.81 0.85 0.83 0.66 0.46 0.42 0.93 0.86 5
Industry 0.99 0.99 1.00 0.72 0.84 0.86 0.84 0.76 0.52 0.50 0.98 0.94 5
Impulsivity 0.98 0.98 1.00 0.72 0.87 0.90 0.87 0.80 0.58 0.58 0.99 0.96 5
SelfControl 0.91 0.94 0.96 0.49 0.76 0.83 0.80 0.60 0.39 0.36 0.87 0.79 5
EmotionalStability 0.99 0.99 1.00 0.65 0.85 0.89 0.84 0.76 0.52 0.50 0.99 0.93 5
Anxiety 0.99 0.99 1.00 0.83 0.90 0.91 0.89 0.83 0.64 0.62 0.97 0.95 5
Irritability 0.98 0.99 0.99 0.78 0.89 0.91 0.89 0.79 0.61 0.60 0.94 0.91 5
WellBeing 0.99 0.99 1.00 0.80 0.90 0.92 0.90 0.81 0.63 0.63 0.95 0.92 5
EmotionalExpressiveness 0.93 0.94 0.99 0.73 0.80 0.83 0.83 0.68 0.45 0.43 0.95 0.90 5
Sociability 0.97 0.98 0.99 0.66 0.85 0.89 0.85 0.75 0.53 0.50 0.95 0.88 5
Adaptability 0.93 0.94 0.99 0.62 0.80 0.84 0.82 0.68 0.44 0.42 0.95 0.88 5
Charisma 0.94 0.96 0.98 0.67 0.82 0.86 0.84 0.72 0.47 0.43 0.88 0.85 5
Humor 0.94 0.94 0.99 0.68 0.78 0.82 0.81 0.64 0.42 0.40 0.97 0.91 5
AttentionSeeking 0.93 0.93 0.99 0.80 0.88 0.90 0.89 0.77 0.58 0.67 0.94 0.92 5
SensationSeeking 0.97 0.98 0.99 0.77 0.86 0.89 0.87 0.77 0.55 0.54 0.92 0.91 5
Conformity 0.90 0.94 0.96 0.67 0.82 0.87 0.85 0.67 0.47 0.47 0.82 0.83 5
Introspection 0.94 0.95 0.99 0.56 0.78 0.84 0.81 0.68 0.41 0.41 0.94 0.87 5
ArtAppreciation 0.90 0.90 1.00 0.68 0.80 0.83 0.81 0.65 0.44 0.46 0.98 0.92 5
Creativity 0.97 0.98 1.00 0.70 0.85 0.86 0.85 0.77 0.52 0.53 0.98 0.94 5
Intellect 0.99 0.99 1.00 0.81 0.86 0.87 0.84 0.78 0.54 0.52 0.99 0.96 5
median 0.94 0.96 0.99 0.68 0.82 0.86 0.84 0.72 0.47 0.47 0.96 0 .90 5

continuous and categorical datas sets shown in Figure 2. Table 10 compares the effect of larger
versus smaller group factor loadings. In all of these case, we show the correlation with the g loading
as well. For both continuous and categorical data and for small versus large group factor loadings
the u statistic is more closely related to the g loading (r=.96 for both cases with larger group factor
loadings, .9 for smaller group factor loadings) than are the other estimates.

How should we interpret these various fit statistics and what should we do if the fits are
not perfect? Even with data meant to be represented by one factor, (i.e, g loadings of 1 in the
hierarchical factor model– Figure 2) the fits are not perfect. Unlike ωh or CFI, u is not sensitive to
the number of items in the scale, but all of these measures are sensitive to the number of observations
(Figures 3, 5). The magnitude of ωh is positively correlated with the number of items, while CFI
is negatively correlated. All measures are larger for more observations, with the exception of CFI
for continuous data.

Summary and Conclusion

The problem of assessing the fit of a unidimensional model of a scale has been a challenge
for many years, and many solutions have been offered. Here we have suggested a simple index, u,
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(D) PA (factors) ~ g loading and number of observations
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(F) PA (components) ~ g loading and number of observations,
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Figure 6

Alternative measures of the number of factors in a hierarchical model include the Minimum Average
Partial (MAP), parallel analysis of the number of factors (P.fa) , or parallel analysis of the number
of components (P.co). For all 3 estimates, we show the statistic as a function of the g loadings of the
generating model, as well as the number of items (panels A, C, E) and the number of observations
(Panels B, D, F). Catseyes show the confidence intervals for 100 replications.
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Table 9

Correlation of fit statistics across 12 levels of g loadings. Lower off diagonal for continuous
variables, upper off diagonal for categorical variables, N observations range from 100 to 1000,
number of items fit range from 9 to 36. See Figure 2 for the data.

Variable g Uni τ ρc ωh CFI ECV
g 0.96 0.95 0.94 0.92 0.84 0.92
Uni 0.96 0.99 0.99 0.96 0.89 0.96
τ 0.95 0.98 0.96 0.94 0.83 0.92
ρc 0.95 0.99 0.96 0.95 0.91 0.96
ωh 0.94 0.96 0.94 0.96 0.83 0.96
CFI 0.89 0.92 0.85 0.93 0.88 0.91
ECV 0.94 0.96 0.92 0.96 0.96 0.96

Table 10

Correlation of fit statistics across 12 levels of g loadings. Lower off diagonal values represent
lower group factor loadings, upper off diagonal larger group factor loadings.

Variable g Uni τ ρc ωh CFI ECV
g 0.96 0.95 0.95 0.93 0.83 0.93
Uni 0.90 0.98 0.99 0.96 0.88 0.96
τ 0.89 0.98 0.96 0.93 0.82 0.92
ρc 0.89 0.98 0.96 0.95 0.90 0.96
ωh 0.85 0.90 0.88 0.88 0.82 0.96
CFI 0.81 0.91 0.86 0.94 0.75 0.90
ECV 0.88 0.93 0.90 0.92 0.95 0.83

which is the the product of indices of τ equivalance and ρc or congeneric equivalence. u is simple
to calculate (e.g., using the unidim or reliability functions in the psych package for R). We
compare the u index to five popular indices of scale quality, α, ωh ωt, CFI, and ECV and show
that unlike α, ωt, or ECV, u is insensitive to the number of items in a scale and unlike the CFI is
sensitive to factor structure. u is robust across sample sizes from 100 to 5000 in assessing how well
a unidimensional model fits the data.
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Appendix: R code

Here we show the R code used in the simulations.
The first section is for Tables 1-5 and Figure 6 showing various effects on the one factor

model.
The next section is for the variation in the g factor loadings.

One factor models
R code

library(psych)
library(psychTools)
library(parallel) #to allow multiple cores (for speed)
#requires psych version 2.4.3 or above

#First simulate data for tables 1-5

#The basic data structure
#we create a 96 x 96 matrix, from which we take partitions for the various examples

fx4 <- matrix(c(.7,.6,.5,rep(0,12),.6,.5,.4,rep(0,12) ,.5,.4,.3,rep(0,12),.7,.5,.3),ncol=4)
fx96 <- rbind(fx4,fx4,fx4,fx4,fx4,fx4,fx4,fx4)
rownames(fx96) <- paste0("V",1:96)
colnames(fx96) <- paste0("F",1:4)
keys96 <- factor2cluster(fx96)
rownames(keys96) <- paste0("V",1:96)
keys.96 <- keys2list(keys96)
keys.12 <-keys2list(keys96[1:12,])
keys.24 <- keys2list(keys96[1:24,])
keys.48 <- keys2list(keys96[1:48,])
# names(keys.12) <- paste0("F",1:4,".12")
names(keys.12) <- paste0(cs(high, med, low, mixed),".",3)
names(keys.24) <- paste0(cs(high, med, low, mixed),".",6)
names(keys.48) <- paste0(cs(high, med, low, mixed),".",12)
names(keys.96) <- paste0(cs(high, med, low, mixed),".",24)
keys.6.2.factors <- list(c(keys.12$high,keys.12$med))
keys.10.2.factors <- list(c(keys.24$high[1:5],keys.24$med[1:5]))
keys.12.2.factors <- list(c(keys.48$high[1:6],keys.48$med[1:6]))
keys.24.2.factors <- list(c(keys.96$high[1:12],keys.96$med[1:12]))
names(keys.6.2.factors) <- "F2.6"
names(keys.10.2.factors) <- "F2.10"
names(keys.12.2.factors) <- "F2.12"
names(keys.24.2.factors) <- "F2.24"
#names(keys.48.2.factors) <- "F2.48"
keys <- c(keys.12,keys.24,keys.48,keys.96,keys.6.2.factors,keys.10.2.factors,

keys.12.2.factors,keys.24.2.factors)

#one run to create Tables 3 and 4
n.obs=500
set.seed(42) #for reproducible results
sim.96 <- sim(fx96,n=n.obs) #generate n.obs participants for 96 variables
minor.96 <- sim.minor(fbig=fx96,n=n.obs, n.small=4) #include nuisance factors
#create item like data
sim.96.item <- sim(fx96,n=n.obs, items=TRUE) #generate n.obs participants for 96 variables
minor.96.item <- sim.minor(fbig=fx96,n=n.obs, n.small=4,items=TRUE) #include nuisance factors

reliability.pure.500 <- reliability(keys, sim.96$observed) #
reliability.minor.500 <- reliability(keys, minor.96$observed,n.sample=50000)

uni.pure.cont <- unidim(keys,sim.96$observed)
uni.minor.cont <- unidim(keys,minor.96$observed)
#do it for categoriical data
uni.pure.item <- unidim(keys,sim.96.item$observed,cor="poly")
uni.minor.item <- unidim(keys,minor.96.item$observed,cor="poly")
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uni.sum <- data.frame(pure.cont=uni.pure.cont$uni[,1:3],
pure.item=uni.pure.item$uni[,1:3],

minor.cont = uni.minor.cont$uni[,1:3],
minor.item = uni.minor.item$uni[,1:3])

#now, a cleaner table, just the u values
uni.sum.1<- data.frame(pure.cont=uni.pure.cont$uni[,1],

pure.item=uni.pure.item$uni[,1],
minor.cont = uni.minor.cont$uni[,1],
minor.item = uni.minor.item$uni[,1])

matPlot(uni.sum.1, xlas=3 ,legend=3,
main="Unidim as a function of number of items, factor loadings and item type")

#now try to get confidence intervals on the basic stats
# we do 100 runs for each condition

# We create a short function to simulate the data
#It uses the sim functions from psych
#also the reliability and unidim functions
#use 10 replications for testing purposes

simulate.unidim <- function(fx,n.obs=1000, n.replications = 10, keys=NULL,
minor=FALSE, items=FALSE) {

results <- list()
uni.results <- list()
vnames <- cs(omega.h ,alpha, omega.tot, ECV, Uni, r.fit ,fa.fit ,n.items)
if(is.null(keys)) {nvar <- 1} else {nvar <- length(keys)}

for (i in (1: n.replications)) { # short loop
if(minor) {sim.data <- sim.minor(fbig=fx, n=n.obs, n.small=4,items=items)
} else {sim.data <- sim(fx,n=n.obs, items=items)}
if(items) {R <- lowerCor(sim.data$observed, cor="poly", show=FALSE)$rho
} else {R <- lowerCor(sim.data$observed,show=FALSE)}

temp <- reliability(keys,R,split=FALSE,n.obs=n.obs)$result.df
uni.temp <- unidim(keys,R, n.obs=n.obs)$fa.stats
results[[i]] <- temp

uni.results[[i]] <- uni.temp
} #end of loop

#organize the results
result.df <- matrix(unlist(results),byrow=TRUE,ncol=13*nvar)
uni.df <- matrix(unlist(uni.results), byrow=TRUE, ncol=9*nvar)
return(result.df)
} # the end of our short simulation function

#now use this function to generate the replications of the data
set.seed(42) #allows for reproducible results

sim100 <- simulate.unidim(fx96,n.obs=100,n.replications=100,keys=keys) # n = 100
sim200 <- simulate.unidim(fx96,n.obs=200,n.replications=100,keys=keys)
sim500 <- simulate.unidim(fx96,n.obs=500,n.replications=100, keys=keys)
sim1k <- simulate.unidim(fx96,n.obs=1000,n.replications=100, keys=keys)
sim5k <- simulate.unidim(fx96,n.obs=5000,n.replications=100, keys=keys)

#now combine the u and omega_t estimates across data sets to graph them
#this is particularly clunky
total.sims <- data.frame(N=c(rep(200,100), rep(500,100),

rep(1000,100),rep(5000,100)),
rbind(sim200[,41:80], sim500[,41:80], sim1k[,41:80], sim5k[,41:80]),

rbind(sim200[,221:260], sim500[,221:260] , sim1k[,221:260], sim5k[,221:260]))

#clean up the names for the graphics
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temp <- gsub("omega.tot","",colnames(total.sims))
temp <- gsub("Uni","u",temp)
temp[18:21] <- c("F1+F2 6","F1+F2 10","F1+F2 12","F1+F2 24")

temp[38:41] <- c("F1+F2 6","F1+F2 10","F1+F2 12","F1+F2 24")
colnames(total.sims) <- temp

#n = 100
#figure not included for compactness
error.bars.by(total.sims[,22:41],total.sims[,1],by.var=FALSE,

v.labels=colnames(total.sims[2:21]),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",
legend=3,
labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims[,2:21],total.sims[,1],by.var=FALSE,v.labels=colnames(total.sims[2:21]),
ylab=expression(omega[t]), las=3,xlab="",ylim=c(0,1),main=expression(paste("A) ",

omega[t]," varies by sample size and factor loadings")),
legend=3, labels =c(100,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims2[,42:61],total.sims2[,1],by.var=FALSE, v.labels=names(keys),
ylab="CFI", las=3,xlab="", ylim=c(0,1),
main=" C) CFI is not very sensitive to variations in factor loadings",
labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims2[,62:81],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="ECV", las=3,xlab="",ylim=c(0,1),
main=" D) ECV varies by sample size and factor loadings",

labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

#min n =200

total.sims <- data.frame(N=c(rep(100,100), rep(500,100), rep(1000,100),rep(5000,100)),
rbind(sim200[,41:80], sim500[,41:80], sim1k[,41:80], sim5k[,41:80]),

rbind(sim200[,221:260], sim500[,221:260] , sim1k[,221:260], sim5k[,221:260]))

error.bars.by(total.sims[,2:21],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab=expression(omega[t]), las=3,xlab="",ylim=c(0,1),main=expression(paste("A) ",

omega[t]," varies by sample size and factor loadings"))

# legend=3, labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims[,22:41],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",
labels =c(5000,1000,500,200), lty=1:4,col =cs(green, red, blue, black))

#do legends separately to have more control

error.bars.by(total.sims[,22:41],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",
labels =c(5000,1000,500,200), lty=1:4,col =cs(black, blue,red, green))

legend("bottomleft",lty=4:1,legend=c(5000,1000,500,200),col=cs(green, red, blue, black) ,pch=15)

#########
########’

Score the ability, bfi, and spi data sets

These data sets are in the psychTools package.
R code

library(psychTools)
#score the data from the real data sets
#
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results are in table 7
#five single construct scales
bfi.keys.plus <-
list(extraversion=c("-E1","-E2","E3","E4","E5"),
openness = c("O1","-O2","O3","O4","-O5"),
agree=c("-A1","A2","A3","A4","A5"),
conscientious=c("C1","C2","C3","-C4","-C5"),

neuroticism=c("N1","N2","N3","N4","N5"),
#3 multiconstruct scales
EO = c("-E1","-E2","E3","E4","E5","O1","-O2","O3","O4","-O5"),
ACN =c("-A1","A2","A3","A4","A5","C1","C2","C3","-C4","-C5","N1","N2","N3","N4","N5"),
All = c("-E1","-E2","E3","E4","E5","O1","-O2","O3","O4","-O5","-A1","A2","A3","A4","A5",

"C1","C2","C3","-C4","-C5","N1","N2","N3","N4","N5"))
bfi.rel <- reliability(bfi.keys.plus,bfi)

#add the ability results for table 7
rel.ab <- reliability(ability.keys,ability)
uni.ab <- unidim(ability.keys,ability,cor="tet", n.obs=1525)
ab.uni.rel <- data.frame(uni.ab$uni[,c(1:3)],rel.ab$result.df[,c(1:3,7:10)],

uni.ab$uni[,c(7:8)],rel.ab$result.df[,11])
df2latex(ab.uni.rel)

rel.bfi<- reliability(bfi.keys,bfi)
uni.bfi <- unidim(bfi.keys, bfi, cor="poly")
bfi.uni.rel <- data.frame(uni.bfi$uni[,c(1:3)],rel.bfi$result.df[,c(1:3,7:10)],

uni.bfi$uni[,c(7:8)],rel.bfi$result.df[,11])
df2latex(bfi.uni.rel)

EO <- c(bfi.keys$extraversion,bfi.keys$openness)
ACN <- c(bfi.keys$agree,bfi.keys$conscientious,bfi.keys$neuroticism)
bfi.plus <- list(extraversion = bfi.keys$extraversion,openness=bfi.keys$openness,

agreeableness=bfi.keys$agree, conscientious=bfi.keys$conscientious,
neuroticism = bfi.keys$neuroticism,
EO = EO, ACN = ACN,
All = c(EO, ACN))

rel.bfi<- reliability(bfi.plus,bfi)
uni.bfi <- unidim(bfi.plus, bfi, cor="poly")
bfi.uni.rel <- data.frame(uni.bfi$uni[,c(1:3)],rel.bfi$result.df[,c(1:3,7:10)],

uni.bfi$uni[,c(7:8)],rel.bfi$result.df[,11])

#now, do the analyses for Table 8

spi.rel <- reliability(spi.keys,spi)
spi.uni <- unidim(spi.keys,spi,cor="poly")
spi.uni.rel <- data.frame(spi.uni$uni[,c(1:3)],spi.rel$result.df[,c(1:3,7:10)],

spi.uni $uni[,c(7:8)], spi.rel $result.df[,11])

Simulation of multidimensional models

This next section simulates the data for figures 1-4. It takes considerable time and so using
multi-cores will speed it up.

First we define two functions which then we call repeatedly.
R code

# a little function to take the output of the VSS function and grab just some of the output.
psych.summary.vss<- function(x) {
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wh.max <- which.max(x$cfit.1)
wh.map <- which.min(x$map)
results <- list(VSS1=wh.max, MAP=wh.map)
return(results)
}

#the next code was
#developed June/July/September 2024 help test the uni and omega statistics

#requires psych_2.4.9 or newer

#first create a "small" function to do one case (for four levels of number of items)

sim.gen<- function(n.trials=10,n.obs=500, gload=NULL, fload=NULL, nfactors=3,
rotate="oblimin",categorical=FALSE,minor=FALSE,VSS=FALSE) {

if (is.null(gload))
gload = matrix(c(0.9, 0.8, 0.7), nrow = 3)

if (is.null(fload)) fload <- matrix(c(0.8, 0.7, 0.6, rep(0, 9), 0.7, 0.6, 0.5, rep(0, 9),
0.6, 0.5, 0.4), ncol = 3)

fload.18 <- rbind(fload,fload)
fload.27 <- rbind(fload,fload.18)
fload.36 <- rbind(fload.18,fload.18)
#do this once
jen <- sim.hierarchical(gload=gload,fload=fload,n=n.obs)
R <- cor(jen$observed)
rel <- suppressMessages(suppressWarnings(reliability(R,nfactors, n.obs=n.obs)))
cn <- colnames(rel$result.df)

results <- list() # We will store the results in a list

#define a local function to do the simulation
#this will be called repeateldy inside the sim.gen function

bigFunction <- function(ntrials,gload,fload, n.obs ,nfactors, categorical, rotate, minor, VSS) {
jen9 <- sim.hierarchical(gload=gload,fload=fload,n=n.obs,categorical=categorical,low=-2,

high=2,minor=minor)
jen18 <- sim.hierarchical(gload=gload,fload=fload.18,n=n.obs,categorical=categorical,low=-2,

high=2,minor=minor)
jen27 <- sim.hierarchical(gload=gload,fload=fload.27,n=n.obs,categorical=categorical,low=-2,

high=2,minor=minor)
jen36 <- sim.hierarchical(gload=gload,fload=fload.36,n=n.obs,categorical=categorical,low=-2,

high=2,minor=minor)

if(!categorical) {R9 <- cor(jen9$observed)
R18 <- cor(jen18$observed)
R27 <- cor(jen27$observed)
R36 <- cor(jen36$observed) } else {
R9 <- polychoric(jen9$observed,correct=0)$rho
R18 <- polychoric(jen18$observed,correct=0)$rho
R27 <- polychoric(jen27$observed,correct=0)$rho

R36 <- polychoric(jen36$observed,correct=0)$rho

}
if(VSS) { #do we want to do all the extra hassle of finding MAP, PA, etc.

vss9 <- suppressWarnings(VSS(R9,n.obs=n.obs))
vss18 <- suppressWarnings(VSS(R18,n.obs=n.obs))
vss27 <- suppressWarnings(VSS(R27,n.obs=n.obs))

vss36 <- suppressWarnings(VSS(R36,n.obs=n.obs))
p9 <- suppressWarnings(fa.parallel(R9,n.obs=n.obs))
p18 <- suppressWarnings(fa.parallel(R18,n.obs=n.obs))
p27 <- suppressWarnings(fa.parallel(R27,n.obs=n.obs) )
p36 <- suppressWarnings(fa.parallel(R36,n.obs=n.obs))

vss.result <-c(psych.summary.vss(vss9)$VSS1,psych.summary.vss(vss18)$VSS1,
psych.summary.vss(vss27)$VSS1,psych.summary.vss(vss36)$VSS1)

map.result <-c(psych.summary.vss(vss9)$MAP,psych.summary.vss(vss18)$MAP,
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psych.summary.vss(vss27)$MAP,psych.summary.vss(vss36)$MAP)
pa.result <- c(p9$nfact, p18$nfact,p27$nfact,p36$nfact)
pa.resultc <- c(p9$ncomp, p18$ncomp,p27$ncomp,p36$ncomp)
}

#combine the results from four passes
rel <- suppressMessages(suppressWarnings(reliability(R9,nfactors,rotate=rotate,n.obs=n.obs)))
rel18 <- suppressMessages(suppressWarnings(reliability(R18,nfactors,rotate=rotate, n.obs=n.obs)))
rel27 <- suppressMessages(suppressWarnings(reliability(R27,nfactors,rotate=rotate,n.obs=n.obs)))
rel36 <- suppressMessages(suppressWarnings(reliability(R36,nfactors,rotate=rotate,n.obs=n.obs)))
results <- t(matrix(unlist(rbind(rel$result.df,rel18$result.df,rel27$result.df,

rel36$result.df)),ncol=16))
if(VSS) results <-rbind(results,vss.result,map.result, pa.result,pa.resultc)
return(results)
} #end bigFunction
results <- mcmapply(bigFunction,c(1:n.trials),MoreArgs=list(gload=gload,fload=fload,

n.obs=n.obs,nfactors=nfactors, categorical=categorical, rotate=rotate,
minor=minor, VSS=VSS))

#results is now a list of n.trials matrices of 16 or 20 x 4
if(VSS) {mat <- matrix(unlist(results),ncol=(length(cn)+4),byrow=TRUE)

colnames(mat) <- c(cn, "VSS","MAT","P.fa","P.co")
} else {mat <- matrix(unlist(results),ncol=length(cn),byrow=TRUE)

colnames(mat) <- cn}
mat.df<- data.frame(n.obs=n.obs,mat)
return(mat.df)
}

#options(mc.cores=4) #use multi-cores if available.

#
sim.gen(gload=gload,n.trials=n.trials,categorical=categorical, n.obs=1000,

minor=minor, VSS=VSS))

#do it for 0 .. 1
set.seed(42)

#use this function multiple times and the aggregate the results

#compare smaller factor loadings

categorical <- TRUE
minor=TRUE
n.trials=100
set.seed(42)
gload<- NULL
VSS <- TRUE
if (minor) fload <- matrix(c( 0.6, 0.5, 0.4, rep(0, 9), .5,.4,.3, rep(0, 9),

0.5,.4,.3), ncol = 3) } else {minor <- NULL}

#do it for 0 .. 1
#this could probably be done in a loop, but easier to for one simulation run
set.seed(42)
gload <- rep(0,3)
v0.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS)
v0.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=200, minor=minor, VSS=VSS)
v0.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=500, minor=minor, VSS=VSS)
system.time(v0.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
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gload <- rep(.1,3)
v.1.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=100,

minor=minor, VSS=VSS)
v.1.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=200,

minor=minor, VSS=VSS)
v.1.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=500,

minor=minor, VSS=VSS)
v.1.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,n.obs=1000,

minor=minor, VSS=VSS)

set.seed(42)
gload <- rep(.2,3)
v.2.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=100,

minor=minor, VSS=VSS)
v.2.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=200,

minor=minor, VSS=VSS)
v.2.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=500,

minor=minor, VSS=VSS)
system.time(v.2.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.3,3)
v.3.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=100,

minor=minor, VSS=VSS)
v.3.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=200,

minor=minor, VSS=VSS)
v.3.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=500,

minor=minor, VSS=VSS)
system.time(v.3.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.4,3)
v.4.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=100,

minor=minor, VSS=VSS)
v.4.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=200,

minor=minor, VSS=VSS)
v.4.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=500,

minor=minor, VSS=VSS)
system.time(v.4.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.5,3)
system.time(v.5.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS))
system.time(v.5.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=200, minor=minor, VSS=VSS))
v.5.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=500, minor=minor, VSS=VSS)
system.time(v.5.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.6,3)
system.time(v.6.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS))
system.time(v.6.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=200, minor=minor, VSS=VSS))
v.6.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=500, minor=minor, VSS=VSS)
system.time(v.6.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))
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set.seed(42)
gload <- rep(.7,3)
system.time(v.7.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS))
system.time(v.7.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=200, minor=minor, VSS=VSS))
v.7.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=500, minor=minor,VSS=VSS)
system.time(v.7.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.8,3)
system.time(v.8.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS))
system.time(v.8.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,
n.obs=200, minor=minor, VSS=VSS))

v.8.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,
n.obs=500, minor=minor, VSS=VSS)

system.time(v.8.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,
n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.9,3)
system.time(v.9.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=100,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
system.time(v.9.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=200,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
v.9.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=500,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster")
system.time(v.9.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=1000,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))

set.seed(42)
gload <- rep(.95,3)
system.time(v.95.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=100,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
system.time(v.95.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=200,

minor=minor,VSS=VSS,categorical=categorical,rotate="cluster"))
v.95.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=500,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster")
system.time(v.95.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=1000,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))

set.seed(42)
gload <- rep(1,3) #100 percent g loading which blows up omega_h unless we use rotate="cluster"
system.time(v1.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=100,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
system.time(v1.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=200,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
v1.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=500,
minor=minor, VSS=VSS,categorical=categorical,rotate="cluster")
system.time(v1.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=1000,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))

}

nr <- nrow(v.9.1000)

g <- c(rep(0,nr *4),rep(.1,nr *4),
rep(.2,nr *4),rep(.3,nr *4),rep(.4,nr *4),

rep(.5,nr *4),rep(.6,nr*4),rep(.7,nr*4),rep(.8,nr*4), rep(.9,nr*4),
rep(.95,nr*4),rep(1,nr*4))
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#now, look at the lower value of fload
new.vss.sum.df <- rbind(v0.100,v0.200,v0.500,v0.1000,

v.1.100,v.1.200,v.1.500,v.1.1000,
v.2.100,v.2.200,v.2.500,v.2.1000,
v.3.100,v.3.200,v.3.500,v.3.1000,
v.4.100,v.4.200,v.4.500,v.4.1000,
v.5.100,v.5.200,v.5.500,v.5.1000,
v.6.100,v.6.200,v.6.500,v.6.1000,
v.7.100,v.7.200,v.7.500,v.7.1000,
v.8.100,v.8.200,v.8.500,v.8.1000,

v.9.100,v.9.200,v.9.500,v.9.1000,
v.95.100,v.95.200,v.95.500,v.95.1000,

v1.100, v1.200, v1.500, v1.1000)

new.vss.sum.df <- data.frame(g,new.vss.sum.df)

#now draw the graphs for low fload
#these graphical functions are repeated multiple times with different parameters
#not shown for compactness

error.bars.by(omega_h ~ g +n.items , data=low.cat.sum.df,
main="omega_h ~ g loading and number of items",
ylim=c(0,1),

v.labels =cs(0,.1,.2,.3,.4,.5,.6,.7,.8,.9,.95,1),
xlab=" g loading",
legend=1, lab=c(9,18,27,36),
colors=cs(black,blue,green,red))
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