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Abstract

Separating the signal in a test from the irrelevant noise is a challenge for all
measurement. Low test reliability limits test validity, attenuates important
relationships, and can lead to regression artifacts. Multiple approaches to the
assessment and improvement of reliability are discussed. The advantages and
disadvantages of several different approaches to reliability are considered.
Practical advice on how to assess reliability using open source software is
provided.
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Introduction

All measures reflect an unknown mixture of interesting signal and uninteresting or irrelevant
noise. Separating signal from noise is the primary challenge of measurement and is the fundamental
goal of all approaches to reliability theory. What makes this challenge particularly difficult is that
what is signal to some is noise to others. In climate science, short term variations in weather mask
long term trends in climate. In oceanography, variations in waves mask tidal effects, waves and
tides in turn mask long term changes in sea level. Within psychology, stable individual differences in
affective traits contaminate state measures of momentary affective states; acquiescence and extreme
response tendencies contaminate trait measures; moment to moment or day to day fluctuations in
alertness or motivation affect measures of ability. All of these examples may be considered as
problems of reliability: separating signal from noise. They also demonstrate that the classification
of signal depends on what is deemed relevant. For indeed, meteorologists care about the daily
weather, climate scientists about long term trends in climate; similarly, emotion researchers care
about one’s current emotion, personality researchers care about stable consistencies and long term
trends.

Whether recording the time spent walking to work or the number of questions answered on
an exam, people differ. They differ not only from each other, but from measure to measure. Thus,
one of us walks to work in 16 minutes one day, but 15.5 minutes the next and 16.5 on the third
day. We can say that his mean time is 16 minutes with a standard deviation of .5 minutes. When
asked how long it takes him to get to work, we should say that our best estimate is 16 minutes
but we would expect to observe anything between 15 and 17 minutes. We tend to emphasize his
central tendency (16 minutes) and consider the variation in his walking rate as irrelevant noise. The
expected score across multiple replications that minimizes squared deviations is just the arithmetic
average score. In the “classical test theory” (CTT) as originally developed by Spearman (1904),
the expected score across an infinite number of replications is known as the true score. True score
defined this way should not be confused with Platonic Truth for if there is any systematic bias in
the observations, then the mean score will show this bias (Lord & Novick, 1968).
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By defining true score, θ, as the expected observed score, θ = E(x), and error as the deviation
of an observed score from this expectation, ε = x−E(x), error is independent of observed score for
it will have an expected value of 0 for all values of true score. That is, for raw scores, X, and
deviation scores x = X− X̄ the scores for an individual may be expressed as

Xi = Θi + Ei ⇐⇒ xi = θi + εi (1)

and because across individuals the covariance of true and error score, σθε = 0,

σ
2
x = σ

2
θ + σ

2
ε +��

�2σθε = σ
2
θ + σ

2
ε . (2)

Just as we can decompose the observed scores into two components, so can we decompose the
observed score variance into the variance of the expected (true) scores and the variance of error
scores.

Furthermore, because observed scores are the sum of expected scores and error scores, the
covariance of observed score with the expected score is just σ2

θ
and the correlation of true scores

with observed scores will be

ρθx =
σθx

σθσx
=

σ2
θ

σθσx
=

σθ

σx
. (3)

This means that the squared correlation of true scores with observed scores (which is the amount
of variance shared between observed and true scores) is the ratio of their respective variances:

ρ
2
θx =

σ2
θ

σ2
x
. (4)

The reliability of a test is defined as this squared correlation of true score with observed score or as
the ratio of true to observed variances. Expressing this in engineering terms of the ratio of signal
(S) in a test to noise (N) (Brennan & Kane, 1977; Cronbach & Gleser, 1964)

S
N

=
ρ2

θx

1−ρ2
θx
. (5)

Finally, from regression, the true deviation score predicted from the observed score is just

θ̂ = βθxx =
σ2

θ

σ2
x

x = ρ
2
θxx. (6)

That is, the estimated true deviation score is just the observed deviation score times the test
reliability. The estimated true score will be the mean of the raw scores + this estimated true score:

Θ̂ = X̄ + βθxx = X̄ +
σ2

θ

σ2
x

x = X̄ + ρ
2
θxx.

Reliability and Validity

Although the validity of a test reflects the content of the items and the particular criterion
of interest, it is important to note that a test can not correlate with any criterion, y, more than it
can correlate with the latent variable that it measures, θ. That is rxy ≤ ρθx. This logically is the
upper bound of the validity of a test and thus validity must be less than or equal to the square root

of the reliability rxy ≤ ρθx =
√

ρ2
θx.
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Using reliability

There are three primary reasons to be concerned about a measure’s reliability. The first is
that the relationship between any two constructs will be attenuated by the level of reliability of
each measure: two constructs can indeed be highly related at a latent level, but if the measures are
not very reliable, the observed correlation will be reduced. The second reason that understanding
reliability is so important is the problem of regression to the mean. Failing to understand how relia-
bility affects the relationship between observed scores and their expected values plagues economists,
sports fanatics, and military training officers. The final reason to examine reliability is to estimate
the true score given an observed score and to establish confidence intervals around this estimate
based upon the standard error of the observed scores.

Correction for attenuation

The original development of reliability theory was to estimate the correlation of latent vari-
ables in terms of observed correlations “corrected” for their reliability (Spearman, 1904). Measures
of “mental character” showed almost the same correlations (.52) between pairs of brothers as did
various physical characteristics (.52), but when the mental characters correlations were corrected
for their reliability, they were shown to be much more related (.81) (Spearman, 1904).

The logic of correcting for attenuation is straight forward. For even if observed scores are
contaminated by error, the errors are independent of the true scores, and the covariance between
the observed scores of two different measures, x and y, just reflects the covariance of their true
scores. Consider two observed variables, x and y, which are imperfect measures of two latent traits,
θ and ψ:

x = θ + ε y = ψ + ζ

with variances
σ

2
x = σ

2
θ+ε σ

2
y = σ

2
ψ+ζ

and reliabilities

ρ
2
θx =

σ2
θ

σ2
x

ρ
2
ψy =

σ2
ψ

σ2
y

and covariance
σxy = σ(θ+ε)(ψ+ζ) = σθψ +((((

((((σθζ + σψε + σεζ = σθψ.

Then the correlation between the two latent variables may be expressed in terms of the observed
correlation and the two reliabilities:

ρθψ =
σθψ

σθσψ

=
σxy√

ρ2
θxσ2

xρ2
ψyσ2

y

=
rxy√

ρ2
θxρ2

ψy

.

That is, the correlation between the true parts of any two tests will the ratio of their observed
correlation to the square root of their respective reliabilities. This correction for attenuation is
perhaps the most important use of reliability theory, for it allows for an estimate of the true
correlation between two constructs when the constructs are perfectly measured, without error. It
does require, however, that we find the reliability of the separate tests.

The concept that observed covariances reflect true covariances is the basis for structural equa-
tion modeling in which relationships between observed scores are expressed in terms of relationships
between latent scores and the reliability of the measurement of the latent variables. By correcting
for unreliability in this way we are able to determine the underlying latent relationships without
the distraction of measurement error.
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Regression to the mean

First considered by Galton (1886, 1889) as he was developing the correlation coefficient,
reversion to mediocrity was the observation that the offspring of tall parents tended to be shorter,
just as those of short parents tended to be taller. Although originally interpreted as of interest
only to geneticists, the concept of regression to the mean is a classic problem of reliability theory
that is unfortunately not as well recognized as it should be (Stigler, 1986, 1997). Whenever groups
are selected on the basis of being extreme on an observed variable, the scores on a retest will be
closer to the mean than they were originally. Classic examples include the tendency of companies
with award winning CEOs to become less successful than comparable companies whose CEOs do
not win the award (Malmendier & Tate, 2009), for flight instructors to think that rewarding good
pilots is counter productive because they get worse on their next flight (Kahneman & Tversky,
1973), for athletes who make the cover of Sports Illustrated to do less well following the publication
(Gilovich, 1991), for training programs for disadvantaged children to help their students (Campbell
& Kenny, 1999) and for the breeding success of birds to improve following prior failures (Kelly
& Price, 2005). Indeed the effect of regression to mean artifacts on the market value of baseball
players was the subject of the popular book and movie, Moneyball (Lewis, 2004). A critical review
of various examples of regression artifacts in chronobiology has the the impressive title of “how to
show that unicorn milk is a chronobiotic” and provides thoughtful simulated examples (Atkinson,
Waterhouse, Reilly, & Edwards, 2001). Regression effects should be controlled for when trying to
separate placebo from treatment effects in behavioral and drug intervention studies (Davis, 2002).

So, if it is so well known, what is it? If observed score is imperfectly correlated with true
score (Equation 3) then it is also correlated with error because

σ
2
x = σ

2
θ + σ

2
ε

σεx = σε(θ+ε) =��σεθ + σ
2
ε = σ

2
ε

and thus

ρεx =
σεx√
σ2

εσ2
x

=
σ2

ε√
σ2

εσ2
x

=
σε

σx
. (7)

That is, individuals with extreme observed scores might well have extreme true scores, but are most
likely to also have extreme error scores. From Equation 6 we see that for any observed score, the
expected true score is regressed towards the mean with a slope of ρ2

xθ
.

In the case of pilot trainees, if the reliability of flying skill is .5, with a mean score of 50 and
a standard deviation of 20, the top 10% of the fliers will have an average score of 75.6 on their first
trial but will regress 12.8 points (the reliability value * their deviation score) towards the mean
or have a score of 62.8 on the second trial. The bottom 10%, on the other hand, will have scores
far below the mean with an average of 24.4 but improve 12.8 points on their second flight to 37.2.
Flight instructors seeing this result will falsely believe that punishing those who do badly leads
to improvement, perhaps due to heightened effort, while rewarding those who do well leads to a
decrease in effort (Kahneman & Tversky, 1973). Similarly, because the mean batting average in
baseball is ≈ .260 with a standard deviation of ≈ .0275 and has a year to year reliability of ≈ .38,
those who have a batting average of 3σ or .083 above the average in one year (.343 instead of .260)
are expected to be just 1.1σ ≈ .031) above the average or .291 in the succeeding year (Schall &
Smith, 2000). That is, a spectacular year is most likely followed by a return, not to the overall
average, but rather to the player’s average.
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Standard Error of Observed Score

Given an observation for one person of xi, what is our best estimate of that person’s true
score and what is the standard deviation of that estimate? The estimate of true score was found
before (Equation 6) and is just θ̂i = ρ2

θxxi. Since the variance of the error scores is the unreliability
times the observed score variance, (1−ρ2

θx)σ2
x , the standard deviation of our estimated true score

will be

σε = σx

√
1−ρ2

θx. (8)

This means that the 95% confidence interval of a true score will be

ρ
2
θxxi±1.96σx

√
1−ρ2

θx. (9)

Note that this confidence interval is symmetric around the regressed score. Thus, for our flight
instructor example with a reliability of .5 and a standard deviation of 20, a pilot with an observed
score of 70 will have an estimated true score of 60±1.96∗20∗

√
1− .50 = 32 to 88 and our baseball

player who was batting .343 had a 95% confidence interval of .291±1.96∗ .0275∗
√

1− .38 = .249 to
.333! Given this amount of expected variation, it is not surprising that so many baseball aficionados
develop superstitious explanations for baseball success; stellar performance one year is not very
predictive of performance in the subsequent year.

True score theory

Estimating reliability using parallel tests

Unfortunately, all of the analyses discussed so far are of no use unless we have some way of
estimating σ2

θ
and σ2

ε . With one test, it is obviously impossible to find a unique decomposition into
true scores and error scores.

Spearman’s basic insight was to recognize that if there are two (or more) observed measures
(x and x′) that have true scores in common but independent error scores with equal variances, then
the correlation of these two measures is a direct estimate of σ2

θ
(Spearman, 1904). For if both x

and x′are measures of θ, and both have equal amounts of independent error,

σ
2
e = σ

2
e′

then

rxx′ =
σθxσθx′

σxσx′
=

σ2
θx

σxσx′
. (10)

But since both x and x′ are thought to be measures of the same latent variable, and their error
variances are equal, then σx = σx′ and σθx = σθx′ = σθ and thus the correlation of two parallel tests
is the squared correlation of the observed score with the true score:

rxx′ =
σ2

θx
σ2

x
=

σ2
θ

σ2
x

= ρ
2
xθ (11)

which is defined as the reliability of the test. Reliability is the correlation between two parallel tests
or measures of the same construct and is the ratio of the amount of true variance in a test to the
total variance of the test and is the square of the correlation between either measure and the true
score.
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Estimating reliability using τ equivalent measures

The previous derivation requires the assumption that the two measures of the latent (unob-
served) trait are exactly equally good and that they have equal error variances. These are very
strong assumptions for “unlike the correlation coefficient, which is merely an observed fact, the
reliability coefficient has embodied in it a belief or point of view of the investigator” (Kelley, 1942,
p 75). Kelley, of course, was commenting upon the assumption of parallelism as well as the as-
sumption that the test means the same thing as when it is given again. With the assumption of
parallelism it is possible to solve the 3 equations (two for variances and one for the covariance)
shown in the first two rows of Table 1 for the three unknowns (σ2

θ
,σ2

ε , and λ1). A relaxation of the
exact parallelism assumption is to assume that the covariances of observed scores with true scores
are equal (λ1 = λ2 = λ3), but that the error variances are unequal (Table 1 lines 1-3). With this
assumption of equal covariances with true score (known as tau equivalence) we have six equations
(one for each correlation between the three tests, and one for each variance) and five unknowns
(σ2

θ
, λ1 = λ2 = λ3, and the three error variances, ε2

1,ε
2
1,ε

2
1) and we can solve using simple algebra.

Table 1: Estimating the parameters of parallel, τ equivalent, and congeneric tests. To solve for two parallel
tests (lines 1-2) require the assumption of equal true (λ1σθ = λ2σθ) and error (ε2

1 = ε2
2) variances. To solve the

six equations for three τ equivalent tests (lines 1-3) we can relax this assumption, but require the assumption
of equal error variances. Congeneric measures (four or more tests) can be solved with no further assumptions.

Observed correlations and modeled parameters

Variable Test1 Test2 Test3 Test4
Test1 σ2

x1
= λ1σ2

θ
+ ε2

1
Test2 σx1x2 = λ1σθλ2σθ σ2

x2
= λ2σ2

θ
+ ε2

2
Test3 σx1x3 = λ1σθλ3σθ σx2x3 = λ2σθλ3σθ σ2

x3
= λ3σ2

θ
+ ε2

3
Test4 σx1x4 = λ1σθλ4σt σx2x4 = λ2σθλ4σθ σx3x4 = λ3σθλ4σθ σ2

x4
= λ4σ2

θ
+ ε2

4

Estimating reliability using congeneric measures

If there are at least four tests, it is possible to solve for the unknown parameters (covariances
with true score, true score variance, error score variances) without any further assumptions other
than that all of the tests are imperfect measures of the same underlying construct (Table 1). In
terms of factor analysis, the congeneric model merely assumes that all measures load on one common
factor. Indeed, with four or more measures of the same construct it is possible to evaluate how well

each measure reflects the construct, λi and the amount of error variance in each measure, r2
xiθ

=
λ2

i
σ2

xi
.

Reliability over what?

The previous paragraphs discuss reliability in terms of the correlations between two or more
measures. What is unstated is when or where are these measures given, as well as the meaning
of alternative measures. Reliability estimates can be found based upon variations in the overall
test, variations over time, variation over items in a test, and variability associated with who is
giving the test. Each of these alternatives has a different meaning and sometimes a number of
different estimates. In the abstract case of parallel tests or congeneric measurement, the domain
of generalization (time, form, items) is not specified. It is possible, however, to organize reliability
coefficients in terms of a simple taxonomy (Table 2). Each of these alternatives is discussed in more
detail in the subsequent sections.



RELIABILITY 8

Table 2: Reliability is the ability to generalize about individual differences across alternative sources of
variation. Generalizations within a domain of items use internal consistency estimates. If the items are not
necessarily internally consistent, reliability can be estimated based upon the worst split half, β, the average
split (corrected for test length) or the best split, λ4. Reliability across forms or across time is just the
Pearson correlation. Reliability across raters depends upon the particular rating design and is one of the
family of Intraclass correlations. Functions in R may be used to find all of these coefficients. Except for cor,
all functions are in the psych package.

Generalization
over Type of reliability R function Name

Unspecified Parallel tests cor(xx’) rxx

Tau equivalent tests cov(xx’) and fa rxx

Congeneric tests cov(xx’) and fa rxx

Forms Alternative form cor(x,y) rxx

Time Test-retest cor(time1time2) rxx

Split halves random split half splitHalf rxx

worst split half iclust or splitHalf β

best split half splitHalf λ4
Items Internal consistency

general factor (g) omega or omegaSem ωh
average alpha or scoreItems α

smc alpha or scoreItems λ6
all common (h2) omega or omegaSem ωt

Raters Single rater ICC ICC2, ICC2, ICC3
Average rater ICC ICC1k, ICC2k, ICC3k

Reliability over alternate forms

Perhaps the easiest two to understand because they are just raw correlations are the reliability
of alternate forms and the reliability of tests over time (test-retest). Alternative form reliability is
just the correlation between two tests measuring the same construct, both measures of which are
thought to measure the construct equally well. Such tests might be the same items presented in
a different order to avoid cheating on an exam, or made up different items with similar but not
identical content (e.g., 2 + 4 = ? and 4 + 2 = ?). Ideally, to be practically useful, such equivalent
forms should have equal means and equal variances. Although the intuitive expectation might be
that two such tests would correlate perfectly, they won’t, for all of the reasons previously discussed.
Indeed, the correlation between two such alternate forms gives us an estimate of the amount of
variance that each test shares with the latent construct being measured. If we have three or more
alternate forms, then their correlations may be treated as if they were τ equivalent or congeneric
measures and we can use factor analysis to find each test’s covariance (λi) with the latent factor,
the square of which will be the reliability.

The construction of such alternate forms can be done formulaically by randomizing items
from one form to prepare a second or third form, or by creating quasi-matching pairs of items
across forms (“the capital of Brazil is ?” and “Brazilia is the capital of ?”). To control for subtle
differences in difficulty, multiple groups of items can be matched across forms (e.g., 4 * 9 = ? and
3 * 7 = ? might be easier than 9 * 4 = ?, and 7 * 3 = ?, so form A could have 4 * 9 = ? and 7 * 3
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= ? while form B could have 9 * 4 = ? and 3 * 7 = ?).

With the ability to computer generate large sets of equivalently difficult ability items (e.g.,
Condon & Revelle, 2014; Embretson, 1998; Leon & Revelle, 1985), the construction of alternate
forms becomes amazingly straight forward. The typical use of such alternate forms of measurement
is to enable equivalent tests to be given to different groups over time without worrying about the
particular test items being disclosed by earlier test takers to later test takers.

Stability over time

The second type of reliability (test-retest) that is a correlation between two forms is the cor-
relation of the same test given at two different occasions. Unlike the correlations between alternate
forms, which should be high, the expected test-retest correlation depends upon the construct being
measured. A fundamental question in measuring any construct is its stability over time. Some
measures should be stable over time; others should not. Traits such as ability, extraversion, or
the propensity to experience positive affect are thought to be relatively consistent across time and
space. Although there might be changes in mean scores over time, rank orders of people on these
tests should be relatively stable.

There is, however, at least one serious difficulty with test retest measures:

The retest coefficient on the same form gives, in general, estimates that are too high,
because of material remembered on the second application of the test. This memory fac-
tor cannot be eliminated by increasing the length of time between the two applications,
because of variable growth in the function tested within the population of individuals.
These difficulties are so serious that the method is rarely used. (Kuder & Richardson,
1937, p 151)

In addition, test-retest measurement of many constructs (e.g., state measures of positive or
negative emotion) are not expected to show any consistency over time. Indeed, the very concept
of a state is that it is not consistent over time. Perhaps the earliest discussion of dispositions or
propensities (traits) and states may be found in Cicero’s Tuscalan Disputations in 45 BCE (Cicero,
1877; Eysenck, 1983). Among later but still early work distinguishing between states and traits
perhaps Allport & Odbert (1936) is the most influential. More recently, Fleeson (2001) conceived
of traits as density distributions of states and Revelle (1986) as the rate of change of achieving a
state. The state-trait distinction is used in longitudinal studies by the State-Trait-Occasion model
(Cole, Martin, & Steiger, 2005) which explicitly decomposes measures over time into their state
and trait components.

When examining the correlates of a putative stable trait measured at one time with a sub-
sequent measure of another trait predicted by the first, the natural question is to what extent is
the trait measure at time 1 the same as if it were measured at the later time. Consider the case of
intelligence at age 11 predicting subsequent risk for mortality (Deary, Whiteman, Starr, Whalley,
& Fox, 2004). How stable is the measure taken at age 11? Correlations of .66 and .54 with perfor-
mance on the identical exam 68 years and 79 years later (Deary, Pattie, & Starr, 2013; Gow et al.,
2011) suggest that the test is remarkably stable. These correlations are even higher when corrected
for restriction of range of those taking the retest (there was differential attrition associated with
IQ).

The stability of intelligence measures across 68-79 years is in marked contrast to the much
lower (but non-zero) correlations of affect over a few years. That positive state affect among high
school students is related .34 to positive state affect three years later suggests that the measure
reflects not just a state component, but rather a reliable trait component as well (Kendall, 2013).
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Split half reliability: the reliability of composites

For his dissertation research at the University of London, William Brown (1910) examined the
correlations of a number of simple cognitive tasks (e.g., crossing out e’s and r’s from jumbled French
text, adding up single digits in groups of ten) given two weeks apart. For each task, he measured
the test-retest reliability by correlating the two time periods and then formed a composite based
upon the average of the two scores. He then wanted to know the reliability of these composites so
that he could correct the correlations with other composites for their reliability. That is, given a
two test composite, X, with a reliability for each test, ρ, what would the composite correlate with
a similar (but unmeasured) composite, X′?

Consider X and X′, both made up of two subtests. The reliability of X is just its correlation
with X′ and can be thought of in terms of the variance-covariance matrix, ΣXX ′ :

ΣXX ′ =

 Vx
... Cxx′

. . . . . . . . . . . .

Cxx′
... Vx′

 (12)

and letting Vx = 1Vx1′ and CXX′ = 1CXX ′1′ where 1 is a a column vector of 1s and 1′ is its transpose,
the correlation between the two tests will be

ρxx′ =
Cxx′√
VxVx′

.

But the variance of a test is simply the sum of the true covariances and the error variances and we
can break up each test into two subtests (X1 and X2) and their respective variances and covariances.
The structure of the two tests seen in Equation 12 becomes

ΣXX ′ =



Vx1

... Cx1x2 Cx1x′1
... Cx1x′2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cx1x2

... Vx2 Cx2x′1
... Cx2x′1

Cx1x′1
... Cx2x′1 Vx′1

... Cx′1x′2

Cx1x′2
... Cx2x′2 Cx′1x′2

... Vx′2


(13)

Because the splits are done at random and the second test is parallel with the first test, the expected
covariances between splits are all equal to the true score variance of one split (Vt1), and the variance
of a split is the sum of true score and error variances:

ΣXX ′ =



Vt1 + Ve1

... Vt1 Vt1

... Vt1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt1

... Vt1 + Ve1 Vt1

... Vt1

Vt1

... Vt1 Vt′1 + Ve′1
... Vt′1

Vt1

... Vt1 Vt′1
... Vt′1 + Ve′1


The correlation between a test made up of two halves with intercorrelation (r1 = Vt1/Vx1) with
another such test is

rxx′ =
4Vt1√

(4Vt1 + 2Ve1)(4Vt1 + 2Ve1)
=

4Vt1

2Vt1 + 2Vx1

=
4r1

2r1 + 2
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and thus

rxx′ =
2r1

1 + r1
. (14)

Equation 14 is known as the split half estimate of reliability. It is important to note that the split
half reliability is not the correlation between the two halves, but rather is adjusted upwards by
Equation 14.

In the more general case where the two splits do not have equal variance, (Vx1 6= Vx2) equa-
tion 14 becomes a little more complicated and may be expressed in terms of the total test variance as
well as the covariance between the two subtests, or in terms of the subtest variances and correlations
(J. Flanagan as cited in Rulon, 1939):

rxx′ =
4Cx1x2

Vx
=

4Cx1x2

2Cx1x2 +Vx1 +Vx2

=
4rx1x2sx1sx2

2Cx1x2 +V x1 +Vx2

=
4rx1x2sx1sx2

2rx1x2sx1σx2 + s2
x1

+ s2
x2

. (15)

Because the total variance Vx1+x2 = Vx1 +Vx2 + 2Cx1x2 , and the variance of the differences is Vx1−x2 =

Vx1 + Vx2 − 2Cx1x2 , then Cx1x2 =
Vx1 +Vx2−Vx1−x2

2 , and we can express reliability as a function of the
variances of differences scores between the splits and the variances of the two splits

rxx′ =
4Cx1x2

Vx
=

2(Vx1 +Vx2−Vx1−x2)

Vx1 +Vx2 + 2Cx1x2

=
2(Vx1 +Vx2−Vx1−x2)

Vx1 +Vx2 +Vx1 +Vx2−Vx1−x2

=
Vx1 +Vx2−Vx1−x2

Vx1 +Vx2−
Vx1−x2

2

. (16)

When calculating correlations was tedious compared to finding variances, Equation 16 was a par-
ticularly useful formula because it just required finding variances of the two halves as well as the
variance of their differences. It is still useful, for it expresses reliability in terms of test variances
and recognizes that unreliability is associated with the variances of the difference scores (perfect
reliability implies that Vx1−x2 = 0).

But how to decide how to split a test? Brown compared the scores at time one with those at
time two and then formed a composite of the tests taken at both times. But estimating reliability
based upon stability over time implies no change in the underlying construct over time. This is
reasonable if measuring speed of processing but is a very problematic assumption if measuring
something more complicated:

...the reliability coefficient has embodied in it a belief or point of view of the investigator.
Consider the score resulting from the item, “Prove the Pythagorean theorem.” One
teacher asserts that this is a unique demand and that there is no other theorem in
geometry that can be paired with it as a similar measure. It cannot be paired with
itself if there is any memory, conscious or subconscious, of the first attempt at proof at
the time the second attempt is made, for then the mental processes are clearly different
in the two cases. The writer suggests that anyone doubting this general principle take,
say, a contemporary-affairs test and then retake it a day later. He will undoubtedly
note that he works much faster and the depth and breadth of his thinking is much less,
– he simply is not doing the same sort of thing as before. (Kelley, 1942, p 75-76)

The alternative to estimating composite reliability by repeating the measure to get two splits
is to split the test items from one administration. Thus, it is possible to consider splits such as the
odd versus even items of a test. This would reflect differences in speed of taking a test in a different
manner than would splitting a test into a first and second part (Brown, 1910). Unfortunately, the
number of ways to split a n item test into two is an explosion of possible combinations

( n
n/2

)
= n!

2(n/2)!2 .

A 16 item test has 6,435 possible 8 item splits and a 20 item test has 92,378 10 item splits. Most
of these possible splits will yield slightly different split half estimates. Consider all possible splits
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of the 16 cognitive ability items in the ability data set included in the psych package (Revelle,
2014) in R (R Core Team, 2014). The split half reliabilities found from equation 15 range from .73
to .87 with an average of .83 (Figure 1).

Split Half reliabilities of a test with 16 ability items

Split Half reliability

Fr
eq
ue
nc
y

0.74 0.76 0.78 0.80 0.82 0.84 0.86

0
50

10
0

15
0

Figure 1. There are 6,435 possible eight item splits of the 16 ability items of the ability data set. Of
these, the maximum split half reliability is .87, the minimum is .73 and the average is .83. All possible splits
were found using the splitHalf function.

Internal consistency estimates of reliability

The generalization of Equation 14 to predict the reliability of a composite made up of n tests
with average intercorrelation of r̄i j was developed by both (Brown, 1910) and (Spearman, 1910)
and has become known as the Spearman-Brown prophecy formula.

rxx =
nr̄i j

1 +(n−1)r̄i j
. (17)

Expressed in terms of the average covariance, c̄i, the unstandardized reliability is

rxx =
nc̄i j

1 +(n−1)c̄i j
. (18)
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That is, the reliability of a composite of n tests (or items) increases as a function of the number of
items and the average intercorrelation or covariance of the tests (items). By combining items, each
of which is a mixture of signal and noise, the ratio of signal to noise (S/N) increases linearly with
the number of items and the resulting composite is a purer measure of signal (Cronbach & Gleser,
1964). If we think of every item as a very weak thread (the amount of signal is small compared to
the noise), we can make a very strong rope by binding many threads together (Equation 17).

Considering how people differ from item to item and from trial to trial, Guttman (1945)
defined reliability as variation over trials.

Using this definition, no assumptions of zero means for errors or zero correlations are
needed to prove that the total variance of the test is the sum of the error variance and the
variance of expected scores; this relationship between variances is an algebraic identity.
Therefore, the reliability coefficient is defined without assumptions of independence as
the complement of the ratio of error variance to total variance (Guttman, 1945, p 257).

That is,

rxx =
σ2

x−σ2
e

σ2
x

= 1− σ2
e

σ2
x
. (19)

KR-20, λ3, and α as indicators of internal consistency

Although originally developed to predict the reliability of a composite where the reliability
of the subtests is found from their test-retest correlation, the Spearman-Brown methodology was
quickly applied to estimating reliability based upon the internal structure of a particular test.
Because of the difficulty of finding the average between-item correlation or covariance in equations 17
or 18, reliability was expressed in terms of the total test variance, Vx, and a function of the item
variances, V xi. For dichotomous items with a probability of being correct, p, or being wrong, q,
Vxi = piqi (Kuder & Richardson, 1937). This approach was subsequently generalized to polytomous
and continuous items by Guttman (1945) and by Cronbach (1951).

The approach to find σ2
e for dichotomous items taken by Kuder & Richardson (1937) was to

recognize that for an n-item test, that the average covariance between items estimates the reliable
variance of each item, and the error variance for each item will therefore be

σ
2
ei

= σ
2
xi
− σ̄i j = σ

2
xi
−

σ2
x−Σσ2

xi

n(n−1)
= piqi−

σ2
x−Σpiqi

n(n−1)

and thus

rxx =
σ2

x−σ2
e

σ2
x

=
σ2

x−Σ(piqi− σ2
x−Σpiqi
n(n−1) )

σ2
x

or

rxx =
σ2

x−Σ(piqi)

σ2
x

n
n−1

. (20)

The derivation in terms of the total item variance and the sum of the (dichotomous) item variances,
Equation 20 was the 20th equation in Kuder & Richardson (1937) and is thus is known as the Kuder-
Richardson (20) or KR20 formula for reliability. Generalizing this to the polytomous or continous
item case, it is known either as α (Cronbach, 1951) or as λ3 (Guttman, 1945):

rxx = α = λ3 =
σ2

x−Σσ2
xi

σ2
x

n
n−1

. (21)
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Guttman (1945) considered six different ways to estimate reliability from the pattern of item
correlations. His λ3 coefficient used the average inter-item covariance as an estimate of the reliable
variance for each item. He also suggested an alternative, λ6 which is to use the amount of an
item’s variance which is predictable by all of the other variables. That is, to find the squared
multiple correlation or smc of the item with all the other items and then find the shared variance
as Vsi = smciVxi

λ6 =
Vx−ΣVxi + ΣVxsi

Vx
. (22)

Guttman (1945) also considered the maximum split half reliability (λ4). Both λ4 and λ6 are obvi-
ously more complicated to find than λ3 or α. To find λ4 requires finding the maximum among many
possible splits and λ6 requires taking the inverse of the correlation matrix to find the smc. But
with modern computational power, it is easy to find λ6 using the alpha, scoreItems or splitHalf
functions in the psych package. It is a little more tedious to find λ4 but this can be done by com-
paring all possible splits for up to 16 items or by sampling thousands of times for larger data sets
using the splitHalf function.

Consider the 16 ability items with the range of split half correlations as shown in (Figure 1).
Using the splitHalf function we find that the range of possible splits is from .73 to .87 with an
average of .83, α = .83, λ6 = .84 and a maximum ( λ4) of .87.

Standard error of alpha

There are at least two ways to find the standard error of the estimated α. One is through
bootstrapping, the other is through normal theory. Consider the variability in values of α for the
16 ability items for 1525 subjects found in the ability data set. Using the alpha function to
bootstrap by randomly resampling the data (with replacement) 10,000 times yields a distribution
of alpha that ranges for .802 to .848 with a mean value of .829 (Figure 2). Compare this to the
observed value of .829.

Using the assumption of multivariate normality, Duhachek & Iacobucci (2004) showed that
the standard error of α, ASE, is a function of the covariance matrix of the items, V, the number of
items, n, and the sample size, N. Defining Q as

Q =
2n2

(n−1)2(1′V1)3 [1′V 1(trV2 + tr2V)−2trV(1′V21)] (23)

where tr is the trace of a matrix (the sum of the diagonal of a matrix), and 1 is a row vector of 1’s,
then the standard error of α is

ASE =

√
Q
n

(24)

and the resulting 95% confidence interval is

α±1.96

√
Q
n
. (25)

These confidence intervals are reported in the alpha function. For the 1525 subjects in the 16
ability data set, the 95% confidence interval using normal theory is from 0.8123 to 0.8462 which
is very similar to the empirical bootstrapped estimates of 0.8166 to 0.8403.
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Distribution of 10,000 bootstrapped values of alpha

Alpha for 16 ability items
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Figure 2. The value of α for the ability data set varies across 10,000 bootstrapped resamplings from .80
to .85. For the 1525 subjects in the 16 item ability data set, the 95% confidence interval using normal
theory is from 0.8123 to 0.8462 which is very similar to the empirical bootstrapped estimates of 0.8168 to
0.8405.

Reliability and item analysis

The α reliability of a scale is a function of the number of items in the scale as well as
the average inter-item correlation in the scale (Equations 17-21). Thus, even if the items do not
correlate very highly, the reliability of the total scale can be increased by merely adding items.
Consider scales ranging in length from 1 to 100 items with average inter-item correlations of .01,
.05, .1, .2, .3, and .4 (left hand panel of Figure 3). An α of .9 may be achieved by using 14 highly
correlated items (r̄ = .4), while to achieve this same level of reliability it would take 21 items with
a somewhat lower inter-correlation (r̄ = .3) or 36 with an even lower value (r̄ = .2). For reference
purposes, the average correlation of the 16 ability items in the ability data set have an r̄ = .23
while the five item scales measuring “Big 5 ” constructs in the bfi data set have average rs ranging
from .23 (for openness/intellect) to .46 (for emotional stability).

The ratio of reliable variance to unreliable variance is known as the Signal/Noise ratio and
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is just S
N = ρ2

1−ρ2 , which for the same assumptions as for α, will be

S
N

=
nr̄

1− r̄
. (26)

That is, the S/N ratio increases linearly with the number of items as well as with the average
intercorrelation. By thinking in terms of this ratio, the benefits of increased reliability due to
increasing the number of items is seen not to be negatively accelerated as it appears when thinking
just in reliability units (Equation 21). Indeed, while the S/N ratio is linear with the number of
items, it is an accelerating function of the conventional measures of reliability. That is, while the
S/N = 1 for a test with a reliability of .5, it is 2 for a test with a reliability of .66, 3 for .75, and
4 for .8, it is 9 for a test with a reliability of .9 and 19 for a reliability of .95 (right hand panel
of Figure 3). Depending upon whether the test is norm referenced (comparing two individuals) or
domain referenced (comparing an individual to a criterion), there are several different S/N ratios
to consider, but all follow this same general form (Brennan & Kane, 1977).

It is not unusual when creating a set of items thought to measure one construct to have
some items that do not really belong. This is, of course, an opportunity to use factor analysis to
explore the structure of the data. If just a few items are suspect, it is possible to find α and λ6
for all the subsets found by dropping out one item. That is, if an item doesn’t really fit, the α

and λ6 values of a scale without that item will actually be higher (Table 3). In the example, five
items measuring Agreeableness and one measuring Conscientiousness were scored using the alpha

function. Although the α and λ6 values for all six items was .66 and .65 respectively, if item C1 is
dropped, the values become .70 and .68. For all other single items, dropping the item leads to a
decrease in α and λ6 either because it reduces the average r, (items A2 - A5) and also because the
test length is less (items A1-A5). Note that the alpha function recognizes that one item (A1) needs
to be reversed scored. If it were not reversed scored, the overall α value would be .44. This reverse
scoring is done by finding the sign of the loading of each item on the first principal component of
the item set and then reverse scoring those with a negative loading.

If internal consistency were the only goal when creating a test, clearly reproducing the same
item many times will lead to an extraordinary reliability. (It will not be one because given the
same item repeatedly, some people will in fact change their answers.) But this kind of tautological
consistency is meaningless and should be avoided. Items should have similar domain content, but
not identical content.

Reliability of scales formed from dichotomous or polytomous variables

Whether using using true/false items to assess ability or 4-6 level polytomous (Likert-like)
items to assess interests, attitudes, or temperament, the inter-item correlations are reduced from
what would be observed with continuous measures. The tetrachoric and polychoric correlation
coefficients are estimates of what the relationship would be between two bivariate, normally dis-
tributed items if they had not be dichotomized (tetrachoric) or trichotomized, tetrachotomized,
pentachotomized or otherwise broken into discrete but ordered categories (Pearson, 1901). The use
of tetrachoric correlations to model what would be the case if the data were in fact bivariate normal
had they not be dichotomized is not without critics. The most notable was Yule (1912) who sug-
gested that some phenomena (vaccinated, not vaccinated, alive vs. dead) were truly dichotomous
while Pearson & Heron (1913) defended the use of his tetrachoric correlation.

Some have proposed that one should use tetrachoric or polychoric correlations when finding
the reliability of categorical scales (Gadermann, Guhn, & Zumbo, 2012; Zumbo, Gadermann, &
Zeisser, 2007). We disagree. The Zumbo et al. (2007) procedure estimates the correlation between
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Table 3: Item analysis of five Agreeableness items and one Conscientiousness item from the bfi data set
using the alpha function. Note that one item is automatically reversed. Without reverse scoring item A1,
α = .44 and λ6 = .52. The items are: A1: “Am indifferent to the feelings of others.”, A2: “Inquire about
others’ well-being”, A3: “Know how to comfort others”, A4: “Love children”, A5: “Make people feel at ease”
and C1: “Am exacting in my work.” The item statistics include the number of subjects who answered the
item, the raw correlation (inflated by item overlap), a correlation that corrects for scale unreliability and
item overlap, the correlation with the scale without that item, the mean and standard deviation for each
item. Examining the effect of dropping one item at a time or by looking at the correlations of the item with
the scale, item C1 does not belong to this set of items.

> alpha(bfi[1:6])

Reliability analysis

Call: alpha(x = bfi[1:6])

raw_alpha std.alpha G6(smc) average_r ase mean sd

0.66 0.66 0.65 0.25 0.014 4.6 0.8

lower alpha upper 95% confidence boundaries

0.63 0.66 0.68

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r alpha se

A1- 0.66 0.66 0.64 0.28 0.015

A2 0.56 0.56 0.55 0.20 0.018

A3 0.55 0.55 0.53 0.20 0.018

A4 0.61 0.62 0.61 0.24 0.016

A5 0.58 0.58 0.56 0.22 0.017

C1 0.70 0.71 0.68 0.33 0.014

Item statistics

n r r.cor r.drop mean sd

A1- 2784 0.52 0.35 0.27 4.6 1.4

A2 2773 0.72 0.67 0.55 4.8 1.2

A3 2774 0.74 0.71 0.57 4.6 1.3

A4 2781 0.61 0.48 0.39 4.7 1.5

A5 2784 0.69 0.61 0.49 4.6 1.3

C1 2779 0.37 0.13 0.11 4.5 1.2

Non missing response frequency for each item

1 2 3 4 5 6 miss

A1 0.33 0.29 0.14 0.12 0.08 0.03 0.01

A2 0.02 0.05 0.05 0.20 0.37 0.31 0.01

A3 0.03 0.06 0.07 0.20 0.36 0.27 0.01

A4 0.05 0.08 0.07 0.16 0.24 0.41 0.01

A5 0.02 0.07 0.09 0.22 0.35 0.25 0.01

C1 0.03 0.06 0.10 0.24 0.37 0.21 0.01
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Figure 3. α or λ3 reliability is an increasing function of the number of items and the inter-item correlation.
Just 6 highly correlated items (r=.4) are needed to achieve an α = .8 which requires 16 items with more
typical correlations (r=.2). Even with barely related items (e.g., r = .05), an α of .8 may be achieved with
76 items. α values of .90 require 14, 21, 36 and 81 for intercorrelations of .4, .3, .2, and .1 respectively.
Although α is a decelerating function of the number of items, the relationship between signal/noise ratio
and both the inter-item correlations and the number of items is linear.

unobserved continuous scores and true scores rather than the correlation of the observed scores
(formed by dichotomizing the unobserved continuous scores) with the latent true score. Reliability
is the squared correlation between observed score and true score, not an unobserved score with
true score. With a simple simulation it is easy to see that the use of the φ or Pearson r provides
reliability estimates that closely match the squared correlation of observed and latent but that
using the tetachoric or polychoric correlation inflates the reliability estimate.

Partially following the simulation of Zumbo et al. (2007), we simulated 14 items for 10,000
participants using the sim.congeneric function. For each participant, a normally distributed
latent score was used to generate a probability of response. This latent score was then used to
generate 14 different scores broken into 1 of n categories where n ranged from 2 to 7. All items
were set to have the same difficulty. The item factor loadings were varied to produce three different
sets of data with different levels of reliability (Table 4). Several conclusions can be drawn from this
simulation: 1) With the same underlying distribution, inter-item r and thus α or λ3 increase as
the number of response categories increases. 2) The correlation of observed scores with the latent
scores also increases as more categories are used. 3) If we are concerned with how well our test
scores correlate with the latent scores from which they were generated, the squared correlation of
observed scores based upon either simply summing the items or by doing an Item Response Theory
based scoring (not shown) is almost exactly the same as the α found using the raw correlations.
This is indeed what we would expect given Equations 17-21. This is not the case when we use
the tetrachoric or polychoric correlations. The suggestion that we should use “ordinal α” seems
incorrect.
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Table 4: The average inter-item correlation, and thus α varies as a function of the number of categories in a
scale as well as the discrimination parameter (factor loadings) of the items. α based upon the raw correlations
more closely approximates the squared correlation of the observed scores with the latent score, ρ2

oθ
than does

the α based upon the polychoric correlations. The ratio of alpha to the squared correlation is shown for both
the raw, α/ρ2, and the polychoric based α, αpoly/ρ2. Simulated data using the sim.congeneric function.

Simulated results for 10,000 cases.

Factor Number of
loading categories r̄ α ρoθ ρ2

oθ
¯rpoly αpoly ρpθ ρ2

pθ
α/ρ2 αpoly/ρ2

2 0.06 0.48 0.69 0.47 0.10 0.60 0.65 0.43 1.02 1.41
3 0.07 0.53 0.73 0.53 0.10 0.61 0.71 0.51 1.00 1.20
4 0.08 0.56 0.75 0.56 0.10 0.60 0.74 0.54 0.99 1.12

.33 5 0.09 0.58 0.76 0.59 0.10 0.61 0.75 0.57 0.99 1.08
6 0.09 0.58 0.76 0.58 0.10 0.60 0.76 0.58 1.00 1.03
7 0.09 0.59 0.77 0.59 0.10 0.61 0.76 0.57 1.00 1.06

2 0.14 0.69 0.83 0.69 0.22 0.80 0.83 0.69 1.00 1.16
3 0.16 0.73 0.85 0.73 0.22 0.80 0.85 0.73 1.00 1.10
4 0.18 0.76 0.87 0.77 0.22 0.80 0.87 0.76 0.99 1.04

.47 5 0.19 0.77 0.88 0.77 0.22 0.80 0.88 0.77 0.99 1.03
6 0.20 0.78 0.88 0.78 0.22 0.80 0.88 0.78 1.00 1.02
7 0.21 0.79 0.89 0.79 0.22 0.80 0.89 0.79 1.00 1.01

2 0.26 0.83 0.90 0.80 0.39 0.90 0.90 0.81 1.03 1.12
3 0.29 0.85 0.92 0.85 0.39 0.90 0.91 0.84 1.00 1.08
4 0.33 0.87 0.93 0.87 0.39 0.90 0.93 0.87 1.00 1.04

.63 5 0.35 0.88 0.94 0.88 0.39 0.90 0.94 0.88 1.00 1.02
6 0.36 0.89 0.94 0.89 0.39 0.90 0.94 0.89 1.00 1.01
7 0.37 0.89 0.94 0.89 0.39 0.90 0.94 0.89 1.00 1.01

Domain sampling theory and structural measures of reliability

A great deal of space has been devoted to finding λ3 or α. This is not because we recommend
the routine use of either, for we don’t. They are important to discuss both for historical reasons
and because so many applied researchers use them. It would seem that one can not publish a
paper without reporting “Cronbach’s α”. This is unfortunate, for as we (Revelle, 1979; Revelle &
Zinbarg, 2009) and many others (e.g., Bentler, 2009; Green & Yang, 2009; Lucke, 2005; Schmitt,
1996; Sijtsma, 2009), including Cronbach & Shavelson (2004), have discussed, α is neither a measure
of how well a test measures one thing (Revelle, 1979; Revelle & Zinbarg, 2009; Zinbarg, Revelle,
Yovel, & Li, 2005), nor the greatest lower bound for reliability (Bentler, 2009).

The basic problem is that α assesses neither the reliability of a test, nor the internal consis-
tency of a test unless the test items all represent just one factor. This is generally not the case.
When we think about a test made up of specific items thought to measure a construct, we are con-
cerned not so much with those particular items as we are with how those items represent the larger
(perhaps infinite) set of possible items that reflect that construct. Thus, extraversion is not just
responding with strong agreement to an item asking about enjoying lively parties, but it also reflects
a preference for talking to people rather than reading books, to seeking out exciting situations, to
taking charge, and many, many more affective, behavioral, cognitive and goal directed items (Wilt
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& Revelle, 2009). Nor is general intelligence just the ability to do spatial rotation problems, to do
number or word series, or the ability to do a matrix reasoning task (Gottfredson, 1997). Items will
correlate with each other not just because they share a common core or general factor , but also
because they represent some subgroups of items which share some common affective, behavioral or
cognitive content, i.e., group factors. Tests made up of such items will correlate with other tests
to the extent they both represent the general core that all items share, but also to the extent that
specific group factors match across tests.

By a general factor, we mean a factor on which most if not all of the items have a substantial
loading. It is analogous to the general 3◦ background radiation in radio astronomy used as evidence
for the “Big Bang”. That is, it pervades all items (Revelle & Wilt, 2013). Group factors, on the
other hand, represent item clusters where only some or a few items share some common variance in
addition to that shared with the general factor. These group factors represent systematic content
(e.g., party going behavior vs. talkativeness in measures of extraversion, spatial and verbal content
in measures of ability) over and above what is represented by the general factor. Typically, when
we assign a name to a scale we are implicitly assuming that a substantial portion of that scale does
in fact reflect one thing: the general factor.

Reliability is both the ratio of true score variance to observed variance as well as the corre-
lation of a test with a test just like it (Equation 11). But what does it mean to be a test just like
another test? If we are concerned with a test made up of a set of items sampled from a domain,
then the other test should also represent samples from that same domain. If we are interested in
what is common to all the items in the domain, we are interested in the general factor saturation
of the test. If we are interested in a test that shares general as well as group factors with another
test, then we are concerned with the total reliability of the test.

Seven measures of internal consistency: α,λ3,λ6,β,ωg,ωt , and λ4

This distinction between general, group, and total variance in a test, and the resulting cor-
relations with similar tests has led to at least seven different coefficients of internal consistency.
These are: α (Cronbach, 1951) (Equation 21) and its equivalent, λ3 (Guttman, 1945) (Equation 21,
which are estimates based upon the average inter item covariance, λ6, an estimate based upon the
squared multiple correlations of the items (Equation 22); β, defined as the worst split half reliability
Revelle (1979); ωg (McDonald, 1999; Revelle & Zinbarg, 2009; Zinbarg et al., 2005), the amount of
general factor saturation; ωt , the total reliable variance estimated by a factor model; and λ4, the
greatest split half reliability.

As an example of the use of these coefficients, consider the 16 ability items discussed earlier
(Figure 1). We have already shown that this set has α = λ3 = .83 with a λ6 = .84 and a λ4 = .87.
To find the other coefficients requires either cluster analysis for β or factor analysis for the two ω

coefficients. A parallel analysis of random data (Horn, 1965) suggests that two principal components
or four factors should be extracted. When four factors are found, the resulting structure may be
seen in the left hand panel of Figure 4. But these factors are moderately correlated, and when the
matrix of factor correlations is in turn factored, the hierarchical structure may be seen in the right
hand panel of Figure 4.

Although hierarchical, higher level, or bifactor models of ability have been known for years
(Holzinger & Swineford, 1937, 1939; Schmid & Leiman, 1957), it is only relatively recently that these
models have been considered when addressing the reliability of a test (McDonald, 1999; Revelle &
Zinbarg, 2009; Zinbarg et al., 2005). Rather than consider the reliable variance of a test as reflecting
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EFA of 16 ability items
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Figure 4. An exploratory factor analysis of 16 ability items shows four moderately correlated factors (left
panel). When these in turn are factored, a second order general factor is shown to account for much of the
variance of the items (right panel and Table 5).

just one factor, F with correlations modeled as R = FF′+ U2 and reliability as

ρxx =
1FF′1′

1FF′1′+ tr(U2)
(27)

the hierarchical approach decomposes test variance in that due to a general factor , g, and a num-
ber of independent group factors, Gi with a correlation matrix of R = (g + G)(g + G)′+ U2. This
representation leads to two different measures of reliability ωg and ωt where

ωg =
1gg′1′

1gg′1′+ 1GG′1′+ tr(U2)
=

(1g1′)2

1R1′
(28)

and

ωt =
1gg′1′+ 1GG′1′

1gg′1′+ 1GG′1′+ tr(U2)
=

1gg′1′+ 1GG′1′

1R1′
. (29)

ωg represents that percentage of the variance of a test which is due to the general factor that is
common to all of the items in the test, while ωt is the total amount of reliable variance in the test.
When ωg is estimated using a Schmid & Leiman (1957) transformation or by using a higher order
model, it is also known (Revelle & Zinbarg, 2009; Zinbarg et al., 2005) as ωh for ωhierarchical to reflect
that it represents a hierarchical model. To make the terminology even more confusing, (McDonald,
1999, equations 6.20a and 6.20b) who introduced ω used equations 28 and 29 to define ω without
distinguishing between these as two very different models.

The approach of Schmid & Leiman (1957) is to extract a number of factors, F, rotate them
obliquely, and then extract one, general, factor, gh, from the resulting factor intercorrelation matrix.
The loadings of the original variables on this higher order factor are found by the product g = g′hF.
That is, the g loadings are fully mediated by the lower order factors (Gignac, 2007). The original
loadings in F are then residualized by F∗ = F−ghF . This results in the model

R = (g + F∗)(g′+ F∗
′
)+ U2
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where F∗ represents the residualized group factors and g the matrix of factor coefficients of the
original variables. Then ωg and ωt are found by equations 28 and 29. This approach is implemented
in the omega function in the psych package. The solution for the 16 ability items is shown in Table 5
where ωh = 0.65 and ωt = 0.86.

Table 5: An analysis of the hierarchical structure of 16 ability items shows a general factor and four lower
level factors. ωh = 0.65,α(λ3) = 0.83,λ6∗ = 0.84,ωt = 0.86

An omega analysis table from the psych package in R

Variable g F1* F2* F3* F4* h2 u2 p2

reason.4 0.50 0.27 0.34 0.66 0.73
reason.16 0.42 0.21 0.23 0.77 0.76
reason.17 0.55 0.47 0.52 0.48 0.57
reason.19 0.44 0.21 0.25 0.75 0.77
letter.7 0.52 0.35 0.39 0.61 0.69
letter.33 0.46 0.30 0.31 0.69 0.70
letter.34 0.54 0.38 0.43 0.57 0.67
letter.58 0.47 0.20 0.28 0.72 0.78
matrix.45 0.40 0.66 0.59 0.41 0.27
matrix.46 0.40 0.26 0.24 0.76 0.65
matrix.47 0.42 0.15 0.23 0.77 0.79
matrix.55 0.28 0.14 0.88 0.65
rotate.3 0.36 0.61 0.50 0.50 0.26
rotate.4 0.41 0.61 0.54 0.46 0.31
rotate.6 0.40 0.49 0.41 0.59 0.39
rotate.8 0.32 0.53 0.40 0.60 0.26

SS loadings 3.04 1.32 0.46 0.42 0.55

Alternatively, a ωgbi from a bifactor solution (Holzinger & Swineford, 1937, 1939) may be
found directly by using a confirmatory factor model where g loads on all variables and the G
matrix has a cluster structure such that items load on one and only one of multiple groups. This
approach is implemented in the omegaSem function in the psych package and makes use of the sem
package (Fox, Nie, & Byrnes, 2013) to do the confirmatory fit.

Unfortunately, these two approaches do not always agree. ωgh as found with the Schmid &
Leiman (1957) transformation using omega is .65 while ωgbi found with the omegaSem function is
.75. The reason for the difference is that that the bifactor sem solution tends to find the general
factor as almost equivalent to the first group factor found with the hierarchical solution. The two
approaches differ most obviously in the case of a very small to no general factor (see “where α goes
wrong” ).

Another approach to finding the general factor reliability is through the use of hierarchical
cluster analysis with the ICLUST algorithm (Revelle, 1979) (implemented in the psych package as
iclust). This approach is very simple: 1) Find the overall correlation matrix; 2) combine the two
most similar items into a new (composite) item; 3) find the correlation of this new item with the
remaining items; 4) repeat steps 2 and 3 until the worst split half correlation, β, fails to increase. β

for a cluster is found by the correlation between the two lower level parts of the cluster (corrected
by Equation 15). Because the only variance that the two worst splits share will be general variance,
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β is an estimate of the general factor saturation. β found by iclust will usually, but not always
agree with the estimated ωh found by the omega function.

When α goes wrong: the misuse of α

α is frequently reported without any evidence for scale homogeneity. The assumption is
made that if a test has a medium to high value of α it must automatically measure one thing.
This is, unfortunately, not correct. For α is just a measure of the average inter item correlation
and the number of items. It does not measure homogeneity. We have shown how a 12 item scale
with average correlations of .3 (and thus α = .84) can represent one general factor in which all the
items correlate .3, two correlated but distinct groups with within-group correlations .42 or .54 but
between-group correlations of .2 or .1 respectively, or even two unrelated sets with within-group
correlations of .66 and between-group correlations of 0 (Revelle & Wilt, 2013).

Consider 10 items from the Big Five Inventory, five of which measure emotional stability and
five of which measures intellect or openness. These 10 items are included as part of the bfi data
set in the psych package. Their correlations are shown in Table 6. Using the alpha function on
these items yields α = .70 with an average intercorrelation of .18 (Table 7). This is not particularly
impressive, but is not atypical of personality items and meets an arbitrary standard of an“adequate”
α. When we examine this result more closely, however, we see that α is not very informative. For
ease of demonstration, we reverse code the three items (O1, O3, and O4) that are flagged by the
alpha function as needing to be reversed keyed. Then plot the resulting correlation matrix using a
“heat map” plot from the cor.plot function (Figure 5). When this done we see that we have two
sub scales (as expected), one measuring (Lack of) Emotional Stability or Neuroticism, the other
measuring openness-intellect. The two sub scales have α reliabilities separately of .81 and .61, but
only correlate .07 for a split half reliability of the entire 10 items of .14. (2∗ .07/(1 + .07)). Indeed,
although the average correlation within the N scale is .47 and within the O scale is .24, the average
inter-item correlation between the two parts is .035. Expressed in terms of factor analysis this is
an example of where a test has two large group factors but not a very large general factor . Indeed,
ωh = .17 and ωt = .76. The value of β = .14 found by iclust agrees exactly with the worst split
found by splitHalf.

This was obviously a case with two factors that should not be combined into one construct
even though the α reliability was adequate. How often this happens in published studies is hard to
know, but unless evidence is provided that the test is indeed homogenous, one should treat studies
that just report α with great skepticism. If the scale is indeed unifactorial, then α is quite adequate
but this needs to be shown rather than assumed.

Other approaches

Reliability is typically considered to be the correlation between two equivalent tests sampled
from a domain of items. It is also a variance decomposition: how much of test variance is due
to signal, how much to noise. Indeed, the ratio of signal to noise is a simple transformation of
the conventional measures of reliability (Equation 5). Recognizing that there are other sources of
variation that are systematic but not associated with the signal that concerns us leads to the concept
of generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972; Cronbach, Rajaratnam,
& Gleser, 1963; Gleser, Cronbach, & Rajaratnam, 1965; Rajaratnam, Cronbach, & Gleser, 1965)
which essentially takes a variance decomposition approach to the problem of reliability (Brennan,
1997; Shavelson, Webb, & Rowley, 1989).
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Table 6: The correlation matrix of the 10 BFI items suggests two different clusters of content. Note that
three items (O1, O3, O4) have been reversed keyed. The items have been rearranged to show the structure
more clearly. See also the heat map (Figure 5). The items are N1: Get angry easily. N2: Get irritated
easily N3:Have frequent mood swings N4: Often feel blue. N5: Panic easily. O1:Am full of ideas O2: Avoid
difficult reading material O3: Carry the conversation to a higher level. O4: Spend time reflecting on things.
and O5: Will not probe deeply into a subject. The average correlation within the N set of items is .47, and
is .24 within the O set. However, the average inter-item correlation between the two sets is just .035.

lowerCor(reverse.code(keys = c("O1","O3","O4"),bfi[16:25]))

Variable N1 N2 N3 N4 N5 O1- O3- O5 O2 O4-

N1 1.00
N2 0.71 1.00
N3 0.56 0.55 1.00
N4 0.40 0.39 0.52 1.00
N5 0.38 0.35 0.43 0.40 1.00

O1- 0.05 0.05 0.03 0.05 0.12 1.00
O3- 0.05 0.03 0.03 0.06 0.08 0.40 1.00
O5 0.11 0.04 0.06 0.04 0.14 0.24 0.31 1.00
O2 0.13 0.13 0.11 0.08 0.20 0.21 0.26 0.32 1.00
O4- -0.08 -0.13 -0.18 -0.21 -0.11 0.18 0.19 0.18 0.07 1.00

Generalizability theory: reliability over facets

When doing any study in which there are multiple sources of variance, it is important to
know their relative contributions in order to improve the quality of the measurement. For example,
if student performance is nested within teachers whom are nested within schools, and the tests
are given at different times, then all of these terms and their interactions are potential sources of
variance in academic performance. If we want to track changes due to an intervention and correct
for errors in reliability, we need to know what are the relevant sources of variance in performance.
Should we increase the number of students per class room, the number of classrooms, or the
number of schools? Similarily, if clinicians rate patients on various symptoms, then we want to
know the variance associated with patients, that with symptoms, that with clinicians, as well as
the interactions of each. Is it better to use more clinicians or better to have them each rate
more symptoms? The procedure as discussed by Cronbach et al. (1972) is first to do an analysis
of variance in the generalizability (G) study to estimate all of the variance components. Then
determine which variance components are relevant for the application in the decision (D) study
in which one is trying to use the measure (Cronbach et al., 1972). Similarly, the components of
variance associated with parts of a test can be analyzed in terms of the generalizability of the entire
test.

Consider the data shown in the top of Table 8 which has been adapted from Gleser et al.
(1965). 12 patients were rated on six symptoms by two clinicians in a G study. Clearly the patients
differ in their total scores (ranging from 13 to 44), and the symptoms differ in their severity (ratings
ranging from 9 to 35). The two clinicians seem to agree fairly highly with each other. The ANOVA
table (bottom section of Table 8) suggests that there are meaningful interactions of people by items
and judges by items. The analysis of variance approach to the measurement of reliability focuses
on the relevant facets in an experimental design and decomposes these facets in terms of their
contribution to the total variance. The application to the D study uses knowledge gained in the
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Table 7: Using alpha and splitHalf functions to examine the structure of 10 items from the Big 5 Inventory.
Although the α = .7 might be thought of as satisfactory, the worst split half reliability of .14 suggests that
making one scale out of these 10 items is probably a mistake. In fact, the items were chose to represent two
relatively independent scales of five items each.

This input

> alpha(bfi[16:25],keys = c("O1","O3","O4"))

> splitHalf(bfi[16:25],keys = c("O1","O3","O4"))

produces this output

Reliability analysis

Call: alpha(x = bfi[16:25], keys = c("O1", "O3", "O4"))

raw_alpha std.alpha G6(smc) average_r ase mean sd

0.7 0.68 0.73 0.18 0.011 2.8 0.75

lower alpha upper 95% confidence boundaries

0.68 0.7 0.72

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r alpha se

N1 0.64 0.62 0.67 0.16 0.013

N2 0.64 0.63 0.67 0.16 0.013

N3 0.64 0.63 0.68 0.16 0.013

N4 0.66 0.65 0.70 0.17 0.012

N5 0.65 0.64 0.70 0.17 0.012

O1- 0.69 0.67 0.72 0.18 0.011

O2 0.68 0.66 0.72 0.18 0.012

O3- 0.69 0.66 0.71 0.18 0.011

O4- 0.73 0.72 0.76 0.22 0.010

O5 0.69 0.66 0.72 0.18 0.011

Item statistics

n r r.cor r.drop mean sd

N1 2778 0.65 0.6574 0.550 2.9 1.6

N2 2779 0.61 0.6121 0.510 3.5 1.5

N3 2789 0.61 0.5916 0.508 3.2 1.6

N4 2764 0.54 0.4766 0.412 3.2 1.6

N5 2771 0.58 0.5148 0.456 3.0 1.6

O1- 2778 0.46 0.3486 0.256 2.2 1.1

O2 2800 0.49 0.3862 0.305 2.7 1.6

O3- 2772 0.48 0.3789 0.270 2.6 1.2

O4- 2786 0.18 0.0086 -0.045 2.1 1.2

O5 2780 0.48 0.3751 0.284 2.5 1.3

Split half reliabilities

Call: splitHalf(r = bfi[16:25], keys = c("O1", "O3", "O4"))

Maximum split half reliability (lambda 4) = 0.78

Guttman lambda 6 = 0.73

Average split half reliability = 0.68

Guttman lambda 3 (alpha) = 0.68

Minimum split half reliability (beta) = 0.14
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Figure 5. The ten items from the bfi data set represent five from the Neuroticism scale and five from the
Openness/Intellect scale. Although the overall α = .70 is marginally acceptable for a ten item inventory, in
fact two subsets correlate .07 and α values of .81 and .61 respectively. The two factor structure is easily
identifiable by showing the correlations in a“heat map”where the darker the color, the higher the correlation.
Plot done with the cor.plot function.

original G study to consider the sources of variance relevant to the particular inference. Examining
the components of variance, we can see that people differ a great deal (V̂p = .42), but that there is
also a great deal of variance associated with the various symptoms being examined (V̂i = .47). There
is negligible variance associated with the mean level of the raters (judges), although there is some
degree of interaction between the raters and the patients. There is substantial variation left over
in the residual (V̂epi j = .62). If the Decision study is concerned with generalizing to the universe of
judges but for the same six symptoms, then the ratio of the expected universe score variance (that
due to individuals and that due to the interaction of individuals with items) to the expected observed

score variance (which includes all terms involving individuals) is .419+.427/6
.419+.427/6+.192/2+.621/12 = .768. On

the other hand, if the generalization is to any pair of judges and any set of six items, the ratio will
be .419

.419+.427/6+.192/2+.621/12 = .657.
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Table 8: An example of a Generalization study, adapted from Gleser et al. (1965). 12 patients are rated by
two clinicians on six symptoms with a severity ranging from 0 to 6. A simple ANOVA provides the Sums of
Squares (not shown) and the Mean Squares. From these, it is possible to estimate the respective variance
components to be used in the Decision study.

The raw data

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6
Patient C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 total

1 0 0 2 1 2 0 2 1 1 1 1 2 13
2 0 0 2 1 2 0 1 2 2 1 2 1 14
3 0 0 1 1 3 3 2 1 2 1 1 2 17
4 2 0 2 1 2 2 2 1 2 1 4 1 20
5 0 0 1 2 2 0 2 3 3 3 3 3 22
6 2 0 2 1 2 0 4 1 3 3 3 1 22
7 0 1 3 1 3 1 3 4 2 2 2 3 25
8 0 0 0 1 4 3 3 4 2 3 3 3 26
9 1 2 2 1 3 6 1 3 2 3 2 1 27
10 0 1 2 4 3 3 2 2 3 5 3 1 29
11 3 4 2 2 3 2 4 5 3 3 5 5 41
12 1 1 2 4 4 4 3 3 4 6 6 6 44

Total 9 9 21 20 33 24 29 30 29 32 35 29 300

With associated estimated components of variance

Source df MS Estimated Variance Components

Persons n-1 11 MSp 7.65 V̂p = (MSp−MSpi−MSp j + MSr)/km .419
Items k-1 5 MSi 12.93 V̂i = (MSi−MSi j−MSpi + MSr)/nm .471
Judges m-1 1 MS j 1.00 V̂j = (MS j−MSi j−MSp j + MSr)/nk -0.14*
Persons:Items (n-1)(m-1) 55 MSpi 1.48 V̂pi = (MSpi−MSr)/k .427
Persons:Judges (n-1)(k-1) 11 MSp j 1.77 V̂p j = (MSpi−MSr)/m .192
Items:Judges (k-1)(m-1) 5 MSi j 0.87 V̂i j = (MSpi−MSr)/n .021
Persons:Items:Judges (n-1)(k-1)(m-1) 55 MSr 0.62 V̂epi j = MSr .621

*Negative variance estimates are typically replaced with 0.
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A special case of generalizability theory: the Intraclass correlations and the reliability of ratings

The components of variance approach associated with generalizability theory is particularly
appropriate when considering the reliability of multiple raters or judges. By forming appropriate
ratios of variances, various intraclass correlation coefficients may be found (Shrout & Fleiss, 1979).
The term intraclass is used because judges are seen as indistinguishable members of a “class”. That
is, there is no logical way of distinguishing them.

For example, six subjects are given some score by four different judges (Table 9). The judges
differ in their mean leniency and in their range. Values of six different ICC coefficients, their
probability of occurring, and confidence intervals for the estimates are reported by the ICC function
in the psych package. ICC reports the variance between subjects (MSb), the variance within subjects
(MSw), the variances due to the judges (MS j), and the variance due to the interaction of judge by
subject (MSe). The variance within subjects is based upon the pooled SS j and the SSe. The
reliability estimates from this generalizability analysis will depend upon how the scores from the
judges are to be used in the decision analysis.

If one wants to know how well the scores of a particular rater will match those of another
particular rater, then the appropriate ICC is that of a single rater (ICC11). If however, raters are
selected at random from a population of raters, the measure of similarity of scores will be ICC21.
Both of these measures reflect the fact that raters can differ in their means. If these effects are
removed by considering deviations from each judge’s average rating, then the agreement between
two fixed raters will be the ICC31. The effect of pooling raters is seen in the ICC1k, ICC2k and ICC3k
coefficients which benefit in the same way as the Spearman-Brown formula predicts an increase in
reliability by pooling items.

Reliability of composites

A common problem is to assess the reliability of a set of tests that are thought to measure
one construct. In this case, it is possible to assess the reliability of each test, to examine their
intercorrelations, and to estimate the reliability of the overall composite score. This problem
is conceptually identical to the estimation of a general factor and group factor contributions to
overall reliability (see Equations 28 and 29). Consider two tests X1 and X2 with reliabilities rx1x1

and rx2x2 and correlation cx1x2 . We want to find the correlation of this composite with another
composite of similar subtests and similar covariances. Unlike the assumption we made of parallel
tests (Equation 13), here we assume that the covariances between the subtests is not the same as
the true variance within each subtest, but we do assume that the variances and covariances for the
alternate form will match those of the original two subtests.

Vx1

... Cx1x2 ρx1x′1Vx1

... Cx1x′2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cx1x2

... Vx2 Cx2x′1
... ρx2x′2Vx2

ρx1x′1Vx1

... Cx2x′1 Vx′1
... Cx′1x′2

Cx1x′2
... ρx2x′2Vx2 Cx′1x′2

... Vx′2


(30)

For simplicity, we consider the standardized solution expressed in correlations rather than in vari-
ances and covariances. Then the correlation between two such tests and thus the reliability of the
composite test will be

r(x1+x2)(x1+x2) =
rx1x1 + rx2x2 + 2rx1x2

2(1 + rx1x2)
. (31)
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Table 9: The Intraclass Correlation Coefficient (ICC) measures the correlation between multiple observers
when the observations are all of the same class. It is a special case of generalizability theory. The ICC is
found by doing an analysis of variance to identify the effects due to subjects, judges, and their interaction.
These are combined to form the appropriate ICC. There are at least six different ICCs, depending upon the
type of generalization that is to be made. The data and formulae are adapted from Shrout & Fleiss (1979).
The analysis was done with the ICC function.

Six subjects and 4 raters

Subject J1 J2 J3 J4 Total

S1 1 3 2 6 12
S2 1 2 6 7 16
S3 2 4 7 6 19
S4 2 5 8 9 24
S5 4 6 8 8 26
S6 5 6 9 10 30

Total 15 26 40 46 127

Produces the following Analysis of Variance Table

Source Df SS MS Label
Subjects 5 56.21 11.24 MSb
Within Subjects 18 112.75 6.26 MSw

Judges 3 97.46 32.49 MS j

Residuals 15 15.29 1.02 MSe

Number of subjects (n) = 6 Number of raters (k) = 4

The ANOVA can then be used to find 6 different ICCs.

Variable type Formula ICC F df1 df2 p

Single raters absolute ICC11
MSb−MSw

MSb+(k−1)MSw
0.17 1.79 5 18 0.16

Single random raters ICC21
MSb−MSe

MSb+(k−1)MSe+k(MS j−MSe)/n 0.29 11.03 5 15 0.00

Single fixed raters ICC31
MSb−MSe

MSb+(k−1)MSe
0.71 11.03 5 15 0.00

Average raters absolute ICC1k
MSb−MSw

MSb
0.44 1.79 5 18 0.16

Average random raters ICC2k
MSb−MSe

MSb+(MS j−MSe)/n 0.62 11.03 5 15 0.00

Average fixed raters ICC3k
MSb−MSe

MSb
0.91 11.03 5 15 0.00

In the case that the reliabilities of the two subtests match their intercorrelation, this is identical to
Equation 14. It is perhaps useful to note that a composite made up of two reliable but unrelated
subtests will have a reliability of the average of the two subtests, even though there is no common
factor to the two subtests! For example, a composite of six items of German speaking ability with
six items measuring knowledge of sailboat racing, with α reliabilities for the two subtests of .8, and
intercorrelation of 0 will still be expected to correlate .8 (have a reliability of .8) with another 12
item composite of six parallel German and six parallel sailing items. The pooled α reliability of
such a test will be α = .68, even though the ωg = 0.

Reliability of difference scores

A related problem is the reliability of a difference score. Replacing the Cx1x2
in Equation 30

with −Cx1x2
leads to a change in sign of the corrections in Equation 31 and we find that the reliability

of a difference score is an inverse function of the correlation between the two tests:

r(x1−x2)(x1−x2) =
rx1x1 + rx2x2−2rx1x2

2(1− rx1x2)
. (32)
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That is, as the correlation between the two tests tends towards their reliabilities, the reliability of
the difference tends toward 0. This is particularly a problem when one wants to interpret differential
deficits in cognitive processing by finding the difference, for example, between verbal and spatial
abilities, each of which is reliably measured, but which are also highly correlated. Consider the
case where rvv = .9,rss = .9 and rvs = .6. Then while the composite V+S measure has a reliability
of r(v+s)(v+s) = .9+.9+2∗.6

2(1+.6) = 3.0
3.2 = .9375, the reliability of the difference V-S is r(v−s)(v−s) = .9+.9−2∗.6

2(1−.6) =
.6
.8 = .75. But if the rvs = .8 the reliability of the composite will increase only slightly (r(v+s)(v+s) = .94
but the reliability of the difference scores decreases considerably (r(v−s)(v−s) = .5).

Conclusion

All signals are contaminated by noise. The effect of such contamination is to attenuate latent
relationships and to raise the threat of regression artifacts. Perhaps because psychological measures
are so threatened with lack of reliability, psychologists have spent more than a century trying to
understand the challenges of reliability theory (Traub, 1997). Even as IRT approaches become
more prevalent (Bock, 1997; Embretson & Hershberger, 1999; Wright, 1997) the study of reliability
is a worthwhile enterprise, for even today, there remains confusion about the ways of estimating
and correcting for reliability.
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Appendix

R functions called

The examples shown made use of various functions and data sets in the psych package (Rev-
elle, 2014) in the R statistical system (R Core Team, 2014). The particular functions used were:

alpha A function to find α and λ6 as well as total scores for a set of items.

scoreItems A function to find α and λ6 as well as total scores for multiple scales.

splitHalf A function to find all possible split half reliabilities for 16 or fewer items or to sample
> 10,000 possible splits for more than 16 items. This includes the lowest β and highest λ4
splits.

fa A function for exploratory factor analysis using maximum likelihood, minimal residual, or prin-
cipal axis factor extraction and a large number of orthogonal and oblique rotations.

omega A function to find ωgh and ωt for an item set using exploratory factor analysis.

omegaSem A function to find ωgbi and ωt for an item set using confirmatory factor analysis.

ICC A function to find Intraclass Correlation Coefficients.

A number of functions that are convenient for analysis include:

fa.diagram Graphically show a factor analysis structure

cor.plot Show a heat map of correlations.

lowerCor Find and display the lower off diagonal correlation matrix.

reverse.code Reverse code specified items

Data sets used for demonstrations:

bfi 25 items measuring Extraversions, Agreeableness, Conscientiousness, Emotional Stability, and
Openness/Intellect. Adapted from the International Personality Item Pool (Goldberg, 1999)
and administered as part of the Synthetic Aperture Personality Assessment (SAPA) project.
Number of observations = 2,800.

ability 16 ability items given as part of the SAPA project. See Condon & Revelle (2014) for
details on this and other open source measures of ability. Number of observations = 1,525.

Sample R code for basic reliability calculations

In order to use the psych package functions, it is necessary to install the package. This needs
to be done only once, but it is recommended to get the latest version from CRAN at least every six
months as R and the psych package get updated. Then, for each new session of R, it is necessary
to make the psych package active by issuing the library command. The following examples
are done with two built in data sets: bfi which includes 25 items taken from the International
Personality Item Pool and used as part of the sapa-project.org online personality assessment
Condon & Revelle (2014). The other example is a set of 16 ability items also collected as part of
the sapa-project.org. More detail may be found in the package vignette “An Overview of the

sapa-project.org
sapa-project.org
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psych package” which is included when downloading the package. For all functions, if more help is
needed, consult the help menu for that function by ?function (e.g., ? alpha).

For more extensive examples are found in the psych package vignette as well as various
tutorials at the Personality-Project : http://personality-project.org/r.

install.packages(list(c("GPArotation","mvtnorm","MASS") #do this once

library(psych) #do this every time R is started

Once the package is installed, a data set to be analyzed may be read into R using the
read.file command, or just read in a text editor/spreadsheet and copied into the clipboard. The
data may be then be pasted into R using the read.clipboard command. In the listing below, the
# symbol denotes a comment and the > symbol an R command.

#first copy the data to the clipboard then

> my.data <- read.clipboard()

#or, if copying from a spreadsheet

> my.data <- read.clipboard.tab()

#or, use a built in data set such as ability

> my.data <- ability

#then, to see if the data have been entered correctly,

#find out the dimensions of the data set and some descriptive statistics.

> dim(my.data)

> describe(my.data)

> dim(my.data)

[1] 1525 16

> describe(my.data)

var n mean sd median trimmed mad min max range skew kurtosis se

reason.4 1 1442 0.68 0.47 1 0.72 0 0 1 1 -0.75 -1.44 0.01

reason.16 2 1463 0.73 0.45 1 0.78 0 0 1 1 -1.02 -0.96 0.01

reason.17 3 1440 0.74 0.44 1 0.80 0 0 1 1 -1.08 -0.84 0.01

reason.19 4 1456 0.64 0.48 1 0.68 0 0 1 1 -0.60 -1.64 0.01

letter.7 5 1441 0.63 0.48 1 0.67 0 0 1 1 -0.56 -1.69 0.01

letter.33 6 1438 0.61 0.49 1 0.63 0 0 1 1 -0.43 -1.82 0.01

letter.34 7 1455 0.64 0.48 1 0.68 0 0 1 1 -0.59 -1.65 0.01

letter.58 8 1438 0.47 0.50 0 0.46 0 0 1 1 0.12 -1.99 0.01

matrix.45 9 1458 0.55 0.50 1 0.56 0 0 1 1 -0.20 -1.96 0.01

matrix.46 10 1470 0.57 0.50 1 0.59 0 0 1 1 -0.28 -1.92 0.01

matrix.47 11 1465 0.64 0.48 1 0.67 0 0 1 1 -0.57 -1.67 0.01

matrix.55 12 1459 0.39 0.49 0 0.36 0 0 1 1 0.45 -1.80 0.01

rotate.3 13 1456 0.20 0.40 0 0.13 0 0 1 1 1.48 0.19 0.01

rotate.4 14 1460 0.22 0.42 0 0.15 0 0 1 1 1.34 -0.21 0.01

rotate.6 15 1456 0.31 0.46 0 0.27 0 0 1 1 0.80 -1.35 0.01

rotate.8 16 1460 0.19 0.39 0 0.12 0 0 1 1 1.55 0.41 0.01

>

Find the α and λ6 estimates of reliability for this data set.

> alpha(ability)

Reliability analysis

Call: alpha(x = ability)

raw_alpha std.alpha G6(smc) average_r ase mean sd

0.83 0.83 0.84 0.23 0.0086 0.51 0.25

lower alpha upper 95% confidence boundaries

0.81 0.83 0.85

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r alpha se

reason.4 0.82 0.82 0.82 0.23 0.0093

reason.16 0.82 0.82 0.83 0.24 0.0091

http://personality-project.org/r
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reason.17 0.82 0.82 0.82 0.23 0.0093

reason.19 0.82 0.82 0.83 0.24 0.0091

letter.7 0.82 0.82 0.82 0.23 0.0092

letter.33 0.82 0.82 0.83 0.24 0.0092

letter.34 0.82 0.82 0.82 0.23 0.0093

letter.58 0.82 0.82 0.82 0.23 0.0092

matrix.45 0.82 0.83 0.83 0.24 0.0090

matrix.46 0.82 0.82 0.83 0.24 0.0091

matrix.47 0.82 0.82 0.83 0.24 0.0091

matrix.55 0.83 0.83 0.83 0.24 0.0089

rotate.3 0.82 0.82 0.82 0.23 0.0092

rotate.4 0.82 0.82 0.82 0.23 0.0092

rotate.6 0.82 0.82 0.82 0.23 0.0092

rotate.8 0.82 0.82 0.83 0.24 0.0091

Item statistics

n r r.cor r.drop mean sd

reason.4 1442 0.58 0.54 0.50 0.68 0.47

reason.16 1463 0.50 0.44 0.41 0.73 0.45

reason.17 1440 0.57 0.54 0.49 0.74 0.44

reason.19 1456 0.52 0.47 0.43 0.64 0.48

letter.7 1441 0.56 0.52 0.48 0.63 0.48

letter.33 1438 0.53 0.48 0.44 0.61 0.49

letter.34 1455 0.57 0.53 0.49 0.64 0.48

letter.58 1438 0.57 0.52 0.48 0.47 0.50

matrix.45 1458 0.48 0.42 0.38 0.55 0.50

matrix.46 1470 0.49 0.43 0.40 0.57 0.50

matrix.47 1465 0.52 0.47 0.43 0.64 0.48

matrix.55 1459 0.42 0.35 0.32 0.39 0.49

rotate.3 1456 0.54 0.51 0.44 0.20 0.40

rotate.4 1460 0.58 0.56 0.48 0.22 0.42

rotate.6 1456 0.56 0.53 0.46 0.31 0.46

rotate.8 1460 0.51 0.47 0.41 0.19 0.39

Non missing response frequency for each item

0 1 miss

reason.4 0.32 0.68 0.05

reason.16 0.27 0.73 0.04

reason.17 0.26 0.74 0.06

reason.19 0.36 0.64 0.05

letter.7 0.37 0.63 0.06

letter.33 0.39 0.61 0.06

letter.34 0.36 0.64 0.05

letter.58 0.53 0.47 0.06

matrix.45 0.45 0.55 0.04

matrix.46 0.43 0.57 0.04

matrix.47 0.36 0.64 0.04

matrix.55 0.61 0.39 0.04

rotate.3 0.80 0.20 0.05

rotate.4 0.78 0.22 0.04

rotate.6 0.69 0.31 0.05

rotate.8 0.81 0.19 0.04

Find the ω estimates of reliability. Specify that you want to try a four factor solution.

> omega(ability,4)

Omega

Call: omega(m = ability, nfactors = 4)

Alpha: 0.83

G.6: 0.84

Omega Hierarchical: 0.65

Omega H asymptotic: 0.76

Omega Total 0.86
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Schmid Leiman Factor loadings greater than 0.2

g F1* F2* F3* F4* h2 u2 p2

reason.4 0.50 0.27 0.34 0.66 0.73

reason.16 0.42 0.21 0.23 0.77 0.76

reason.17 0.55 0.47 0.52 0.48 0.57

reason.19 0.44 0.21 0.25 0.75 0.77

letter.7 0.52 0.35 0.39 0.61 0.69

letter.33 0.46 0.30 0.31 0.69 0.70

letter.34 0.54 0.38 0.43 0.57 0.67

letter.58 0.47 0.20 0.28 0.72 0.78

matrix.45 0.40 0.66 0.59 0.41 0.27

matrix.46 0.40 0.26 0.24 0.76 0.65

matrix.47 0.42 0.23 0.77 0.79

matrix.55 0.28 0.12 0.88 0.65

rotate.3 0.36 0.61 0.50 0.50 0.26

rotate.4 0.41 0.61 0.54 0.46 0.31

rotate.6 0.40 0.49 0.41 0.59 0.39

rotate.8 0.32 0.53 0.40 0.60 0.26

With eigenvalues of:

g F1* F2* F3* F4*

3.04 1.32 0.46 0.42 0.55

general/max 2.3 max/min = 3.17

mean percent general = 0.58 with sd = 0.2 and cv of 0.35

Explained Common Variance of the general factor = 0.53

The degrees of freedom are 62 and the fit is 0.05

The number of observations was 1525 with Chi Square = 70.19 with prob < 0.22

The root mean square of the residuals is 0.01

The df corrected root mean square of the residuals is 0.03

RMSEA index = 0.01 and the 90 % confidence intervals are NA 0.019

BIC = -384.25

Compare this with the adequacy of just a general factor and no group factors

The degrees of freedom for just the general factor are 104 and the fit is 0.78

The number of observations was 1525 with Chi Square = 1186.18 with prob < 5e-183

The root mean square of the residuals is 0.09

The df corrected root mean square of the residuals is 0.13

RMSEA index = 0.083 and the 90 % confidence intervals are 0.078 0.087

BIC = 423.88

Measures of factor score adequacy

g F1* F2* F3* F4*

Correlation of scores with factors 0.83 0.80 0.53 0.56 0.71

Multiple R square of scores with factors 0.69 0.64 0.28 0.32 0.50

Minimum correlation of factor score estimates 0.37 0.28 -0.45 -0.36 0.00

Total, General and Subset omega for each subset

g F1* F2* F3* F4*

Omega total for total scores and subscales 0.86 0.77 0.69 0.64 0.53

Omega general for total scores and subscales 0.65 0.23 0.52 0.47 0.27

Omega group for total scores and subscales 0.13 0.53 0.17 0.17 0.26
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