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Abstract

There are three fundamental problems in Sijtsma (2008): 1) contrary to the
name, the glb is not the greatest lower bound of reliability but rather is
systematically less than ωt (McDonald, 1999), 2) we agree with Sijtsma that
when considering how well a test measures one concept, α is not appropriate,
but recommend ωt rather than the glb, and 3) the end user needs procedures
that are readily available in open source sofware.

The problem of how to assess reliability has been with us ever since Spearman (1904)
introduced the concept of correction for attenuation and that of split half half reliability
(Spearman, 1910). To Spearman (1904), reliability was used as a way of finding the “real
correlation between the true objective values” (rpq) by correcting observed correlations
(rp′q′) for the attenuation of “accidental” deviations of observed scores from their “true
objective values”. To (Spearman, 1904, p 90), this required finding “the average correlation
between one and another of these independently obtained series of values” (what has come
to be called parallel tests) to estimate the reliability of each set of measures (rp′p′ ,rq′q′),
and then to find

rpq =
rp′q′√rp′p′rq′q′

. (1)

Rephrasing Spearman (1904, 1910) in more current terminology (Lord & Novick,
1968; McDonald, 1999), reliability is the correlation between two parallel tests where tests
are said to be parallel if for every subject, the true scores on each test are the expected
scores across an infinite number of tests and thus the same, and the error variances across
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subjects for each test are the same. Unfortunately, “all measurement is befuddled by error”
(McNemar, 1946, p 294). Error may be defined as observed score - true score and hence
to be uncorrelated with true score and uncorrelated across tests. Thus reliability is the
fraction of test variance that is true score variance. However, such a definition requires
finding a parallel test. For just knowing the correlation between two tests, without knowing
the true scores or their variance (and if we did, we would not bother with reliability), we
are faced with three knowns (two variances and one covariance) but ten unknowns (four
variances and six covariances).

In this case of two tests, by defining them to be parallel with uncorrelated errors, the
number of unknowns drops to three and reliability of each test may be found. With three
tests, the number of assumptions may be reduced, and if the tests are tau (τ) equivalent
(each test has the same true score covariance), reliability for each of the three tests may
be found. With four tests, to find the reliability of each test, we need only assume that the
tests all measure the same construct (to be “congeneric”), although possibly with different
true score and error score variances (Lord & Novick, 1968).

Unfortunately, with rare exceptions, we normally are faced with just one test, not
two, three or four. How then to estimate the reliability of that one test? The original
solution was to estimate reliability based upon the correlation between two halves (r1)
correcting for the fact they were half tests rather than full tests using a special case (n=2)
of the more general Spearman-Brown correction (Brown, 1910; Spearman, 1910)

rxx =
nr1

1 +(n−1)r1
. (2)

Subsequent efforts were based on the domain sampling model in which tests are seen as
being made up of items randomly sampled from a domain of items ( Lord (1955), made the
distinction between “Type 1” sampling of people, “Type 2” sampling of items and “Type12”
sampling of persons and items). The desire for an easy to use “magic bullet” based upon
the domain sampling model has led to a number of solutions (e.g., the six considered by
Guttman (1945)), of which one, coefficient alpha (Cronbach, 1951) is easy to compute and
easy to understand. The appeal of α was perhaps that it was the average of all such random
splits (Cronbach, 1951).

Even though the pages of Psychometrika have been filled over the years with critiques
and cautions about coefficient α and have seen elegant solutions for more appropriate es-
timates, few of these suggested coefficients are used. Partly this is because they are not
easily available in programs for the end user nor described in a language that is acces-
sible to many psychologists. In a statement reminiscent of Spearman’s observation that
“Psychologists, with scarely an exception, never seem to have become acquainted with the
brilliant work being carried on since 1886 by the Galton-Pearson school” (Spearman, 1904,
p 96), Sijtsma (2008) points out that psychometrics and psychology have drifted apart
as psychometrics has become more statistical and psychologists have remained psycholo-
gists. Without clear discussions of the alternatives and easily available programs to find
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the alternative estimates of reliability, most psychologists will continue to use α. With the
advent of open source programming environments for statistics such as R (R Development
Core Team, 2008), that are easy to access and straightforward to use, it is possible that
the other estimates of reliability will become more commonly used.

What coefficients should we use? Sijtsma (2008) reviews a hierarchy of lower bound
estimates of reliability and in agreement with Jackson & Agunwamba (1977) and Wood-
house & Jackson (1977), suggests that the glb or “greatest lower bound” (Bentler & Wood-
ward, 1980) is, in fact, the best estimate. We believe that this is an inappropriate suggestion
for at least three reasons:

1. Contrary to what the name implies, the glb is not the the greatest lower bound
estimate of reliability, but is somewhat less than another, easily calculated and understood
estimate of reliability (omegatotal,ωt) of McDonald (1999). (We use the subscript on ωt

to distinguish between the coefficient ω introduced by (McDonald, 1978, equation 9) and
equation 6.20a of McDonald (1999) that he also called ω and which we (Zinbarg et al.,
2005) previously relabeled ωhierarchical,(ωh).

2. Rather than just focusing on the greatest lower bounds as estimates of a reliability
of a test, we should also be concerned with the percentage of the test that measures one
construct. As has been discussed previously (Revelle, 1979; McDonald, 1999; Zinbarg et
al., 2005) this may be estimated by finding ωh, the general factor saturation of the test
(McDonald, 1999; Zinbarg et al., 2005), or the worst split half reliability of a test (coefficient
beta, β , of Revelle (1979).

3. Although it is easy to estimate all of the Guttman (1945) lower bounds, as well
as β , ωh and ωt , the techniques for estimating the glb are not readily available for the end
user.

The ordering of reliability estimates

Defined as the correlation between a test and a test just like it, reliability would
seem to require a second test. The traditional solution when faced with just one test is
to consider the internal structure of that test. Letting reliability be the ratio of true score
variance to test score variance, or alternatively, 1 - the ratio of error variance to true score
variance, the problem becomes one of estimating the amount of error variance in the test.
That is, two tests, X, and a test just like it, X′, with covariance, Cxx′ can be represented as

ΣXX ′ =

 Vx
... Cxx′

. . . . . . . . . . . .

Cxx′
... Vx′

 (3)

and letting Vx = 1Vx1′ and CXX′ = 1CXX ′1′ the correlation between the two tests will be

ρ =
Cxx′√
VxVx′

(4)
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Although arguing that reliability was only meaningful in the case of test-retest,
Guttman (1945) may be credited with introducing a series of lower bounds for reliabil-
ity, each based upon the item characteristics of a single test. These six have formed the
base for most of the subsequent estimates.

All of these estimate assume that the covariances between items represents true
covariance, but that the variances of the items reflect an unknown sum of true and unique
variance. That is, the variance of a test is simply the sum of the true covariances and the
error variances:

Vx = 1Vx1′ = 1Ct1′+ 1Ve1′ = Vt +Ve (5)

and the structure of the two tests seen in Equation 3 becomes

ΣXX ′ =

 VX = Vt + Ve
... Cxx′ = Vt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt = Cxx′
... Vt′ + Ve′ = VX ′

 (6)

and because Vt = Vt ′ and Ve = Ve′ reliability is

ρ =
CXX ′

VX
=

Vt

VX
= 1− Ve

Vt
. (7)

The problem remains how to estimate Vt and Ve from one test. Guttman (1945),
in an attempt to formalize the estimation of reliability, proposed six lower bounds for ρ.
Each one successively modifies the way that the error variance of the items are estimated.
The first lowest bound, λ1 considers that all of an item variance is error and that only the
interitem covariances reflect true variability. Thus, λ1 subtracts the sum of the diagonal of
the observed item covariance matrix from the total test variance:

λ1 = 1− tr(Vx)
Vx

=
Vx− tr(Vx)

Vx
(8)

The second bound, λ2 replaces the diagonal with a function of the square root of the sums
of squares of the off diagonal elements. Let C2 = 1(V−diag(V))21′, then

λ2 = λ1 +

√
n

n−1C2

Vx
=

Vx− tr(Vx)+
√

n
n−1C2

Vx
. (9)

Effectively, this is replacing the diagonal with n * the square root of the average squared
off diagonal element.

Guttman’s 3rd lower bound, λ3, also modifies λ1 and estimates the true variance of
each item as the average covariance between items and is, of course, the same as Cronbach’s
α.

λ3 = λ1 +
VX−tr(VX )

n(n−1)

VX
=

nλ1

n−1
=

n
n−1

(
1− tr(V)x

Vx

)
=

n
n−1

Vx− tr(Vx)
Vx

= α (10)
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This is just replacing the diagonal elements with the average off diagonal elements. λ2 ≥ λ3
with λ2 > λ3 if the covariances are not identical.

As pointed out by Ten Berge & Zegers (1978), λ3 and λ2 are both corrections to λ1
and this correction may be generalized as an infinite set of successive improvements.

µr =
1
Vx

(
po +(p1 +(p2 + . . .(pr−1 +(pr)1/2)1/2 . . .)1/2)1/2),r = 0,1,2, . . . (11)

where
ph = ∑

i 6= j
σ

2h
i j ,h = 0,1,2, . . .r−1

and
ph =

n
n−1

σ
2h
i j ,h = r

(Ten Berge & Zegers, 1978). Clearly µ0 = λ3 = α and µ1 = λ2. µr ≥ µr−1 ≥ . . .µ1 ≥ µ0,
although the series does not improve much after the first two steps.

Guttman’s fourth lower bound, λ4 was originally proposed as any spit half reliability
(Guttman, 1945) but has been interpreted as the greatest split half reliability (Jackson &
Agunwamba, 1977). If X is split into two parts, Xa and Xb, with correlation rab then

λ4 = 2
(

1− VXa +VXb

VX

)
=

4rab

Vx
=

4rab

VXa +VXb + 2rabVXaVXb

(12)

which is just the normal split half reliability, but in this case, of the most similar splits.
λ5, Guttman’s fifth lower bound, replaces the diagonal values with twice the square

root of the maximum (across items) of the sums of squared interitem covariances

λ5 = λ1 +
2
√

C̄2

VX
. (13)

Although superior to λ1, λ5 underestimates the correction to the diagonal. A better esti-
mate would be analogous to the correction used in λ3:

λ5+ = λ1 +
n

n−1
2
√

C̄2

VX
. (14)

Guttman’s final bound considers the amount of variance in each item that can be
accounted for by the linear regression of all of the other items (the squared multiple corre-
lation or smc), or more precisely, the variance of the errors, e2

j , and is

λ6 = 1−
∑e2

j

Vx
= 1− ∑(1− r2

smc)
Vx

(15)

Not included in Guttman’s list of lower bounds is McDonald’s ωt , which is similar to
λ6, but uses the estimates of uniqueness (u2) from factor analysis to find e2

j . This is based
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on a decomposition of the variance of a test score, Vx, into four parts: that due to a general
factor, g, that due to a set of group factors, f, (factors common to some but not all of
the items), specific factors, s unique to each item, and e, random error. (Because specific
variance can not be distinguished from random error unless the test is given at least twice,
McDonald (1999) combines these both into error). Letting

x = cg + Af + Ds + e (16)

then the communality of item j, based upon general as well as group factors,

h2
j = c2

j +∑ f 2
i j (17)

and the unique variance for the item

u2
j = σ

2
j (1−h2

j) (18)

may be used to estimate the test reliability. That is, if h2
j is the communality of item j,

based upon general as well as group factors, then for standardized items, e2
j = 1−h2

j and

ωt =
1cc′1 + 1AA′1′

Vx
= 1−

∑(1−h2
j)

Vx
= 1− ∑u2

Vx
(19)

Because h2
j ≥ r2

smc, ωt ≥ λ6.
It is important to distinguish here between the two ω coefficients of McDonald (1978)

and (McDonald, 1999, Equation 6.20a), ωt and ωh. While the former is based upon the
sum of squared loadings on all the factors, the latter is based upon the sum of the squared
loadings on the general factor.

ωh =
1cc′1

Vx
(20)

As we will discuss later, ωh is a very important indicator of how well a test measures one
construct.

Yet another estimate that has been proposed for the reliability of a principal com-
ponent (Ten Berge & Hofstee, 1999) unfortunately also uses λ1 as a symbol, but this time
as the magnitude of the first eigenvalue is

αpc = 1− n
(n−1)λ1

. (21)

The discussion of various lower bounds seemed finished when Jackson & Agunwamba
(1977) and Bentler & Woodward (1980) introduced their “greatest lower bound”, or glb.
Woodhouse & Jackson (1977) organized Guttman’s six bounds into a series of partial
orders, and provided an algorithm for estimating the glb of Jackson & Agunwamba (1977).
An alternative algorithm was proposed by Bentler & Woodward (1980) and discussed by
Sijtsma (2008). Unfortunately, none of these authors considered ωt , which we will show
tends to exceed the glbs reported in the various discussions of the utility of the glb.
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A comparison of estimates of reliability: when is the greatest lower
bound not the greatest?

To understand how Guttman’s bounds relate to each other and to the glb and ωt ,
it is useful to consider some now classic example data sets. Using open source functions
available in the psych package (Revelle, 2008) for R (R Development Core Team, 2008), we
compared the six lower bounds of Guttman (1945), two ways of estimating α, one of which
uses the traditional approach, (λ3 = α), the second of which is the α of the first principal
component, four of the bounds of Ten Berge & Zegers (1978), the glb, and ωt for nine
data sets (Table 1). The first six are taken from Sijtsma (2008) who reports three real and
three artificial examples. We also examine two of those of Bentler & Woodward (1980) who
report examples of their algorithm for computing the glb. The first set was taken from Lord
& Novick (1968), the second from Warner (1960). The final comparison is from Ten Berge
& Socan (2004) who gives an example taken from De Leeuw (1983). Two other estimates
reported in Table 1 that will be discussed later are coefficients β (Revelle, 1979) and ωh
(McDonald, 1999; Zinbarg et al., 2005). Although Confirmatory Factor Analysis (CFA)
or Structural Equation Modeling (SEM) techniques could have been used to estimate ωt

(Raykov & Shrout, 2002) and ωh (Zinbarg et al., 2006, 2007) , we made use of Exploratory
Factor Analysis (EFA).

Two findings are very clear from Table 1: α is much lower than the superior estimates
of reliability and the highest estimate of reliability is never the glb. In most, but not all of
the examples, ωt (McDonald’s estimate of the proportion of total common variance in the
test) provides the greatest reliability estimate. The two exceptions are when the maximum
split half reliability is the greatest reliability. The differences between the three highest
estimates (ωt ,λ4 and the glb) tend to be not great (indeed several are only observable at
the third decimal point) and all three differ substantially from α.

In that reliability is used to correct for attenuation (equation 1), underestimating the
reliability will lead to an over estimate of the unattenuated correlation and overestimating
the reliability will lead to an under estimate of the unattenuated correlation. Choosing the
proper reliability coefficient is therefore very important and should be guided by careful
thought and strong theory. In the case in which our test is multidimensional and several
of the dimensions contribute to the prediction of the criterion of interest, α will lead
to an overcorrection, but unfortunately, so will using the glb. ωt will lead to a more
accurate correction. In the case in which the test is multidimensional but only the test’s
general factor contributes to the prediction of the criterion of interest, α will lead to an
undercorrection, and the glb will unfortunately lead to an even greater undercorrection
of the estimate of the association between the test’s general factor and the criterion. ωh
would lead to a more accurate correction in this case.
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Table 1: Comparison of 13 estimates of reliability. The data sets and the glb estimates are taken
from the six examples in Sijtsma (2008) (S1-S2c), two examples in Bentler & Woodward (1980),
(B&W 1 & 2) and the De Leeuw (1983) dataset analyzed by Ten Berge & Socan (2004). The
greatest reliability estimates are underlined. λ1 . . .λ6 are the Guttman (1945) bounds, ωh and ωt
are from McDonald (1999), µ0 . . .µ3 are from Ten Berge & Zegers (1978), β is from Revelle (1979).

Estimate S-1 S-1a S-1b S-2a S-2b S-2c B&W 1 B&W 2 TB&S
N items 8 4 4 6 6 6 4 6 6
β (min) .656 .651 .610 .000 .000 .437 .756 .854 .739
ωh .593 .643 .676 .049 .000 .532 .706 .921 .767
λ1 .687 .561 .507 .444 .444 .444 .671 .785 .700
λ3(α,µ0) .785 .749 .676 .533 .533 .533 .894 .942 .840
αpc .787 .749 .676 .553 .533 .553 .896 .943 .841
λ2(µ1) .789 .753 .678 .643 .585 .533 .898 .943 .842
µ2 .790 .755 .657 .663 592 .533 .899 .943 .843
µ3 .791 .755 .658 .666 .592 .533 .900 .943 .843
λ5 .766 .738 .660 .593 .549 .511 .881 .911 .819
λ6 (smc) .785 .713 .593 .800 .571 .488 .880 .960 .830
λ4 (max) .853 .820 .696 .889 .647 .533 .913 .979 .884
glb .852 .820 .696 .889 .667 .533 .920 .976 .885
ωt .844 .893 .859 .889 .669 .561 .951 .972 .900

What is the meaning of internal consistency?

We agree with Sijtsma (2008) and indeed have long argued that α is a poor index
of unidimensionality (Revelle, 1979), Zinbarg et al. (2005). So in fact did Cronbach (1951,
1988); Cronbach & Shavelson (2004). The examples of varying the factor structure from
one to three factors while maintaining an equal α (Sijtsma, 2008, Table 5) are helpful, for
they show the insensitivity to internal structure of some of the Guttman (1945) indices.
However, rather than using the amount of explained common variance (ECV) suggested by
Sijtsma (2008), we believe that a more appropriate measure to consider is an index of how
much the test measures one common factor. We reiterate our recommendation (Zinbarg
et al., 2005, 2006) for use of higher factor analysis with a Schmid-Leiman transformation
(Schmid & Leiman, 1957) (if doing EFA) and the subsequent estimation of the general factor
saturation (coefficient ωh of (McDonald, 1999, equation 6.21)). This may also be done, of
course, using SEM or CFA procedures for hierarchical factor analysis. Alternatively, at
least one of us also likes to use hierarchical cluster analysis of the items to find the worst
split half reliability (coefficient β of Revelle (1979)). Both of these coefficients are estimates
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of the amount of variance attributable to one common factor for all of the items1. It is
particularly telling that the β and ωh estimates are 0.02 for the two examples of Sijtsma
(2008) of data with multiple factors (Table 1). Even though α = .533 and the glb and ωt

were very large, and thus show reliability in the sense of relatively little error variability,
they do not show homogeneity or internal consistency. The ECV estimate preferred by
Sijtsma (2008) does show that a test is not unidimensional, but we find that the 50% and
33% ECV values not as compelling as the 0.0 values for β or ωh.

The issue of how much information is available in a single testing session is very
important. When using tests meant to assess individual differences in stable traits such as
verbal ability or neuroticism, the idea of reliability defined as stability across time makes
sense. Indeed, by using multiple measures we are able to distinguish between unique but
reliable versus unique and unreliable item variance. But when evaluating how well we
are assessing levels of particular states, such as energetic arousal or positive affect, at a
particular time (Rafaeli & Revelle, 2006), we must use some estimate of internal consistency.

As for the meaning of internal consistency, we agree with Sijtsma (2008) that it has
been used in different ways by different authors. Some have used it to be synonymous with
homogeneity and unidimensionality. Others have reserved homogeneity to refer to unidi-
mensionality and internal consistency to refer to inter-relatedness of items. The problem
with inter-relatedness is that it doesn’t differentiate between the case in which each item
is related to only a small proportion of the other items in the test from the case in which
each item is related to every, or nearly, every other item in the test.

In our view, there are four important psychometric properties that a test might
possess.

1. Unidimensionality, as in IRT, whether a single latent variable is being measured
(thus, we could imagine a case–in which difficulty factors are present–in which a unidi-
mensional scale has a factor structure that has multiple factors when represented in terms
of the linear factor model that does not do a very good job when items have nonlinear
associations with the latent variable under at least some conditions). Whereas unidimen-
sionality represents the ideal of measurement (McNemar, 1946), there are some domains
that consist of related (possibly even highly related) yet discriminable facets that differ
even in their true scores. Such domains are themselves not unidimensional and so it would
be unrealistic to expect measures of them to be unidimensional.

2. Presence of a general factor. If all of the facets in a domain are related, at least
to some extent, then there is a single latent variable that is common to all of the items
in that domain. For those cases in which the ideal of unidimensionality is not realistic
(see above), the presence of a general factor is the ideal to strive for. The presence of
a general factor can be tested via the appropriate testing of nested confirmatory factor
models (i.e., comparing a model with k orthogonal group factors at the highest level of its

1But see Zinbarg et al. (2005) for a discussion of why ωh might be preferred.
2As the careful reader will note, using EFA the estimated ωh in set S2a was .04 rather than 0.0. Using

CFA this becomes 0.0.
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factor structure to either a (1) model with k orthogonal group factors at the highest level
of its factor structure that also contains a general factor orthogonal to all other factors
or (2) a model with an additional level to its structure that is loaded on by the k group
factors that form the highest level of the comparison model).

3. The proportion of test variance due to a general factor. It is possible that a test is
unidimensional or contains a general factor but that factor common to all of the test items
is so weakly saturated in the items that the test does not provide a precise measure of
the single latent variable or general factor. Thus, the proportion of test variance due to a
general factor provides important information because it indexes the precision with which
the test’s total scores estimate a latent variable common to all test items (alternatively,
this proportion indexes the degree to which the total scores generalize to latent variable
common to all test items). This proportion is ωh.

4. The proportion of test variance due to all common factors. There are some
contexts, such as applied prediction, in which we are concerned with the upper bound of
the extent to which a test’s total score can correlate with some other measure and we are
not concerned with theoretical understanding regarding which constructs are responsible
for that correlation. The proportion of test variance due to all common factors provides
this upper bound (alternatively, this proportion indexes generalizability to the domain from
which the test items are a representative sample and which may represent more than one
latent variable). This proportion is ωt (and which = α when the test is unidimensional).

If people insist on continuing to use the terms homogeneity and internal consistency,
perhaps they would use the labels unidimensionality for property 1, homogeneity for prop-
erty 2 (presence of a general factor, the items are homogeneous to the extent that they
all share at least one attribute or latent variable common), general factor saturation for
property 3, and internal consistency for property 4.

Estimation of reliability

It has been known for a long time that α is a lower bound to the reliability, in many
cases even a gross underestimate, and a poor estimate of internal consistency and in some
cases a gross overestimate, but it continues to be used. Why is this? Perhaps inertia on the
part of editors and reviewers who insist on at least some estimate of reliability and don’t
know what to recommend. Perhaps inertia on the part of commercial program to implement
features that are not widely requested. And perhaps it is the fault of psychometricians who
develop better and more powerful algorithms but do not make them readily available. A
case in point is the Minimum Rank Factor Analysis program used for some of the examples
in Sijtsma (2008). It is said to be available from the web but it turns out to be a Pascal
program that runs just on MS-DOS. This is not overly helpful for users of non MS-DOS
platforms. With the wide acceptance of open source programming systems such as R (R
Development Core Team, 2008) that run on all platforms, perhaps it is time to implement
the better estimates in open source programs. We have done so with the implementation
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of ωh, ωt , β and λ1 . . .λ6 in the psych package available from CRAN (the Comprehensive R
Archive Network: http://www.R-project.org). (For examples of syntax for estimating
ωt using proprietary SEM software see Raykov & Shrout (2002)). We encourage others to
do the same.

Conclusions

We concur with Sijtsma (2008) that editors and authors should be encouraged to
report better estimates of reliability in addition to α. Where we disagree is what estimates
to report. The recommendation for using the glb as the best estimate of reliability is more
of a marketing ploy based upon the name of “greatest lower bound” rather than reality.
As is clear from Table 1, McDonald’s ωt exceeds the glb in all but two of the examples
given by either Sijtsma (2008), Bentler & Woodward (1980) or Ten Berge & Socan (2004).
In those two cases, the maximum split half reliability slightly exceeds the glb. We have
previously discussed the many situations where it is very important to estimate ωh Zinbarg
et al. (2005, 2006, 2007). ωt and ωh are easy to calculate from any factor analysis output in
either commercial programs (e.g., SPSS or SAS) or packages (e.g., psych, Revelle (2008))
contributed to the open source program R (R Development Core Team, 2008). It is likely
that psychometric contributions would have greater impact if they were readily available
in such open source programs.

http://www.R-project.org
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