Psychology 205: Research Methods in Psychology

Methods in Differential Psychology

Department of Psychology Northwestern University Evanston, Illinois USA

November, 2016

The two disciplines of psychology

Data = Model + Residual

Types of designs

Methods of analysis

The two disciplines of psychology

 $\mathsf{Data} = \mathsf{Model} + \mathsf{Residual}$

Types of designs

Methods of analysis

Two fundamentally different approaches to psychological research

- Experimental versus differential
 - Experimental approaches associated with cognitive, neurobiology, social.
 - Correlational primarily with personality/clinical/life span developmental.
- Some combine both approaches:
 - Experimental clinical/personality examines interactions of situation with individual differences.
 - Experimental developmental examines changes in response time capabilities with age.
- Should not confuse lab based data collection with experimental – experimental requires random assignment to conditions.

Differential Psychology

- 1. Emphasis on dispersion (variance and covariance) rather than central tendency (mean and median)
- 2. Studies of Ability, Interests/Values, Temperament
- 3. Prediction of performance in college/universities, professions, military
- 4. Correlations with marriage, divorce, employment, health and mortality
- 5. Correlations with psychopathology
 - Understanding the risk for depression in terms of cognitive processing
 - Understanding the genetic and environmental basis of schizophrenia

Data = Model + Residual

All studies have three questions:

- 1. What are the data?
 - Collected experimentally
 - Collected observationally
- 2. How do we model them?
- 3. How large is the residual variance?

Theory of Data + the Data Box

- Theory of data
 - Sets of Objects and of People
 - Two types of comparisons (Proximity and order)
 - Comparisons of preferences: Do you like X? is a proximity measure.
 - $|o_i p_j| < \epsilon$ (Do you like something?)
 - $|o_i p_j| < |o_k p_l|$ (do you like something more than I like something else?)
 - Comparisons of order: Can you do X?
 - $o_i < p_j$ Are you better than an item?
 - $o_i < o_j$ Is this object more than that object?
- The Data Box: comparisons across time and space
 - People over tests, people over time
 - Tests over people, tests over time
 - etc.

The data box: Subjects x Measures x Time

Methods of data collection

- 1. Self report how do you normally think, feel, act, do
 - Traits/states (normally versus in the moment)
 - adjectives/sentences/narratives
- 2. Other report (peer, supervisor, subordinate)
- 3. Ability tests what is the best you can do
- 4. Behavioral observation what is the subject doing?
- 5. Physiology
 - above the neck EEG/MRI/fMRI/PET
 - below the neck HR/SC/BP/blood/urine
- 6. Telemetric
 - active: web/big EAR/text messaging
 - passive: appearance of webpages, facebook
- 7. National and international surveys
- 8. Animal lesion/drug/observation

Types of designs used in differential psychology

1. Experimental

- Lab based
- Field based
- Quasi-experimental designs
 - Do not have random assignment
 - Need to consider many alternative threats to validity
- 2. Observational
 - Cross sectional
 - Longitudinal (both short term as well as long term)

Longitudinal

- 1. Brief within subject
 - Within subject correlations of mood and behavior over time
 - Using diaries, PDAs, cell phones, text messaging, big EAR
- 2. Long term within subject
 - Terman and the "termites"
 - Berkeley/Oakland Growth Studies
 - Scottish Mental Health Study
 - Seattle Longitudinal Study
 - Dunedin longitudinal study
 - Study of Mathematically Precocious Youth

Methods of Analysis

1. Issues in scaling - what do the numbers mean?

- Do the measures have linear or just ordinal properties?
- Are we measuring the same thing at age 11 as age 77?
- Can we adapt prior measures for current theory?
- 2. The correlation coefficient and its many forms
 - Y varies as X
 - Is Y a continuous variable?
 - is X a continuous variable?
 - what is the underlying relationship?

Issues in scaling and scaling artifacts

The many forms of the correlation coefficient

Table: A number of correlations are Pearson r in different forms, or with particular assumptions. If $r = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2 \sum y_i^2}}$, then depending upon the type of data being analyzed, a variety of correlations are found.

Coefficient	symbol	Х	Y	Assumptions
Pearson	r	continuous	continuous	
Spearman	rho (ρ)	ranks	ranks	
Point bi-serial	r _{pb}	dichotomous	continuous	
Phi	$\dot{\phi}$	dichotomous	dichotomous	
Bi-serial	r _{bis}	dichotomous	continuous	normality
Tetrachoric	r _{tet}	dichotomous	dichotomous	bivariate normality
Polychoric	r _{pc}	categorical	categorical	bivariate normality

Correlation and the multiple R

Many other statistics (F, d, b) may be expressed in terms of r

Table: Alternative Estimates of effect size. Using the correlation as a scale free estimate of effect size allows for combining experimental and correlational data in a metric that is directly interpretable as the effect of a standardized unit change in x leads to r change in standardized y.

Statistic	Estimate	r equivalent	as a function of r
Pearson correlation	$r_{xy} = \frac{C_{xy}}{\sigma_x \sigma_y}$	r _{xy}	
Regression	$b_{y.x} = \frac{C_{xy}}{\sigma_x^2}$	$r = b_{y.x} \frac{\sigma_y}{\sigma_x}$	$b_{y.x} = r \frac{\sigma_x}{\sigma_y}$
Cohen's d	$d = rac{X_1 - \hat{X}_2}{\sigma_x}$	$r = \frac{d}{\sqrt{d^2+4}}$	$d = \frac{2r}{\sqrt{1 - r^2}}$
Hedge's g	$g = \frac{X_1 - X_2}{s_x}$	$r=rac{g}{\sqrt{g^2+4(df/N)}}$	$g = \frac{2r\sqrt{df/N}}{\sqrt{1-r^2}}$
t - test	$t = \frac{d\sqrt{df}}{2}$	$r = \sqrt{t^2/(t^2 + df)}$	$t = \sqrt{\frac{r^2 df}{1 - r^2}}$
F-test	$F = \frac{d^2 df}{4}$	$r = \sqrt{F/(F + df)}$	$F = \frac{r^2 df}{1 - r^2}$
Chi Square		$r = \sqrt{\chi^2/n}$	$\chi^2 = r^2 n$
Odds ratio	$d = \frac{\ln(OR)}{1.81}$	$r = \frac{\ln(OR)}{1.81\sqrt{(\ln(OR)/1.81)^2 + 4}}$	$ln(OR) = \frac{3.62r}{\sqrt{1-r^2}}$
r _{equivalent}	r with probability p	$r = r_{equivalent}$	

Data quality

1. Reliability (Do multiple measures measure the same thing?)

- Estimates of reliability
 - internal consistency $(\alpha, \omega_h, \omega_t, \gamma)$
 - stability
 - alternate form
 - parellel tests
- 2. Validity: Does the arrow hit the target?
 - Concurrent Validity
 - Predictive Validity
 - Construct Validity
 - convergent (do 2 measures of the same thing measure agree?)
 - discriminant (do 2 measures of different things not agree?)
 - incremental (does it make a difference?)

Advanced methods in differential psychology

- 1. Factor analysis, cluster analysis, multidimensional scaling
 - These are attempts at reducing the complexity of the measures to a more meaningful number.
 - Instead of measuring 24 emotion words, are we just measuring 2 dimensions of emotion?
 - Instead of measuring 100 adjectives, are we measuring just "Big 5" dimensions of personality?
 - Do all cognitive tests measure a general factor of ability?
- 2. Structural Equation Modeling: Can we apply regression to latent variables?
- 3. Multilevel modeling: Measures are nested within levels:
 - students within classrooms within schools
 - emotions within people over time
 - people within couples
- 4. Computer modeling and simulation

Advanced methods in differential psychology: EFA, CFA, SEM

Methods of analysis

24 mental measures in a multidimensional space

Multidimensional Scaling of 24 ability tests

Dimension 1

24 mental measures in a hierarchical space

ICLUST of 24 mental tests

Advanced methods in differential psychology within a structural framework: scaling, reliability, validity, EFA, CFA, PC, MDS, SEM

