Other domains of personality research

- · Evolutionary perspectives and individual differences
- Behavior Genetics of Personality
- Personality and Intelligence
- Longitudinal studies of personality consistency
 Block et al.
 - Caspi et al.
- Cognitive Affective Personality Systems
- Affective Dynamics

Personality, Individual Differences and Evolutionary Psychology

- · Evolutionary Psychological Theory
 - Barkow, Cosmides, and Tooby (1992) The Adapted Mind
 - Species typical behavior
 - Adaptations that are important for survival and reproduction will be selected for over time
 - Why are there individual differences

5 broad classes of competition

- · Between species
- · Within species
 - Intrasexual competition for survival and reproduction
 - Intersexual competition
 - Parent offspring competition
 - Sibling competition

Competition-1: Between species

- Competition and co-evolution: the "Red Queen hypothesis" Van Valen, 1973
- need to run fast just to stay in place
- Is co-evolution the genesis of sexual reproduction? Why do we sexually reproduce -- wastes 50% of our genes
- Random reassortment protects from parasites?
- Are individual differences merely a defense against parasitic load?

Competition-2: Within species

- Intra-sexual competition for survival and reproduction
 - Niche selection
 - Multiple strategies lead to locally optimal solutions

Competition 3: within species

• Inter-sexual competition

- Resource investment model (e.g., Buss)
 - Materity certainty and high resource cost
- Paternity uncertainty and low resource cost
- But reproductive success is not number of children, but number of surviving descendants

Competition-4: Within species

- · Parent offspring competition for resources
 - Offspring share 50% of parent's genes.
 - Reproductive value of offspring to parent varies as situational stress and probability of offspring reproduction
 - Parent step child conflict

Competition -5: within species

- Sibling competition (see F. Sulloway's Born to Rebel for a discussion of the implication of birth order effects)
 - Differential reproductive fitness (as a child) as a function of birth order leads to
 - Multiple strategies varying by birth order
 First borns -- higher conscientiousness
 Later borns higher opennesss
 - (but see also Harris for an analysis of the effects of peer groups)

Behavior Genetics and inheritance of individual differences

- Until recently, little emphasis upon genetic mechanisms per se, but rather on proportions of variance explained through genetic relationship
- Not much (until recently) recognition of distinction between structural versus regulatory genes

Behavior genetics

· Experimental studies

- Rats and selective breeding
- Maze bright versus maze dull
- Reactive versus non-reactive
- Drosophila and selective breeding
 - Positive and negative geotaxis
 - Positive and negative phototaxis
 - · Genes for clock timing
- Dog breeding for 10,000 years

Simple genetic models

- Single gene models classic Mendelian genetics
 - (One Gene, One Disease)
 Multiple alleles
 - Additive genetic variance
 - Non-additive (dominance/recessive) variance
 - Epistasis interaction with other genes

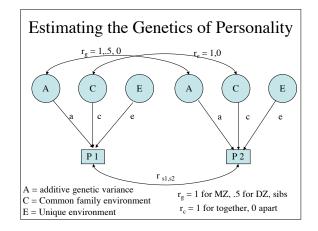
Simple genetic models: selection for fitness

- Small variation in reproductive fitness leads to selection pressure to eliminate less fit allele
- Non additivity (dominance/recessive) makes it harder to select out or fixate.
- Balanced polymorphism has selective advantage for heterozygous rather than homozygous. (e.g., sickle cell, G6PD as defenses against malaria)
- Mutation rate of $\approx .0001 \Rightarrow 3/generation$

Polygenetic models

- · Polygenes as sum of separate genes
 - Biometric analysis rather than conventional Mendelian analysis
 - Polygenetic traits assumed to be the case for complex behaviors
- Work now starting with genes of interest and looking for behavioral differences

The concept of heritability sources of variance


- Decomposition of phenotypic variance
 - $-V_p =$ Phenotypic variance
 - $-V_g^r = Additive genetic variance$
 - $-V_d = Dominance (recessive) variance$
 - V_i = epistatic (gene by gene interactions)
 V_{am} = assortative mating variance
 - $V_e = environmental variance$
 - V_{es} = shared environmental (variance between families)
 - $V_e = non-shared environmental (variance within families)$
 - Cov (genetic by environment covariance)
 - V_{eg} (genetic by environment interaction)
- $V_{error} =$ variance due to poor measurement

Heritability: a hodgepodge ratio

- $h^2 = V_g / V_p$ narrow heritability
- $h^2 = (V_g + V_d + V_i \dots)/V_p$ Broad heritability
- Both estimates are dependent upon variance as observed and imply nothing about what would happen if situations change
 - Consider the case of height or CHD
 - Highly heritable but large environmental effects
 - CHD rates double for Japanese living in US
 - Height has gone up even though highly heritable

Estimating heritability

- Twins: Experiments of nature
 - MZa: identical genes,
 - DZ: 50% (on average) genetic relationship
- Family composition: experiments of humans
 MZa: identical genes, no shared environment
 - DZa: 50% shared genes, no shared environment
 - MZt: identical genes, shared family environment
 - DZt: 50% shared genes, shared family environment
 - Adopted: 0% shared genes, shared family environment

Personality and Genetics

Trait	Narrow	Broad	Shared
	heritability	heritability	Environment
Extraversion	.36	.49	.00
Neuroticism	.28	.39	.09
Agreeableness	.28	.38	.04
Conscientiousness	.31	.41	.05
Openness	.46	.45	.05
IQ	.50	.75	.04

Personality	and	Genetics
-------------	-----	----------

Occupational	Narrow	Broad	Shared
interest	heritability	heritability ^a	Environment
Realistic	.36	.41	.12
Investigative	.36	.66	.10
Artistic	.39	.50	.12
Social	.38	.52	.08
Enterprising	.31	.50	.11
Conventional	.38	.38	.11

McGue and Bouchard ARN 1998

Personality and Genetics

Psychiatric	Broad	Shared
illness	heritability	Environment
Schizophrenia	.80	No
Major Depression	.37	No
Panic disorder	.3040	No
Generalized Anx	.30	Small, females
Phobias	.24	No
Alcoholism	.5060	Yes

Personality and Genetics Social Attitudes Broad Shared heritability Environment Conservatism Under age 20 0 Yes Over age 20 .45-.65 Yes, females Right Wing Auth .0-.16 .50-.64 .30-.45 .2-.4 Religiousness (adult) Specific religion 0 NA Bouchard, CDPS, 2004

Heritability: misconceptions

- High heritability => Constancy: but
 - Heritability changes by changing the environment
 - Reducing environmental variation increases the heritability
 - Herrnstein's paradox: higher heritabilities imply more equal environments
 - Low heritability => high environmental inequality

Heritability: misconceptions - 2

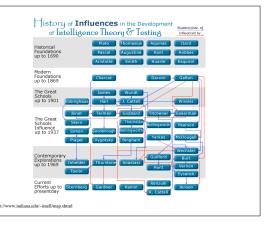
· Heredity vs. environment

- Genes code proteins, not behavior
- Genes act through environment
- As meaningless as asking "Which is more important in area of a rectangle: height or width?"
- Individuals versus populations
 - Variance estimates are population based, not for individual
 - Variations in environments affect estimates

Heritability and environment example of Phenylketonuria

- PKU as inability to process phenylalanine
 PKU is a Mendelian recessive gene
 - Effect without environmental manipulation
 - is severe brain retardation – Phenylalanine diet stops the effect
 - With proper diet, no effects (but girls are still carriers of PKU gene and their fetus is at risk if mother is not on PKU diet)

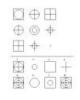
Cognitive and non-cognitive aspects of personality

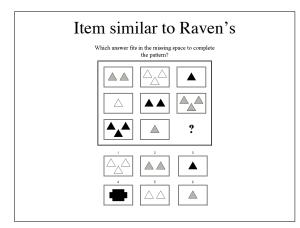

- Traditional personality variables are central tendencies of behavior: what do you like to do, how do you normally feel
- Cognitive Ability measures are limit measures: how much can you do, what are the limits of performance

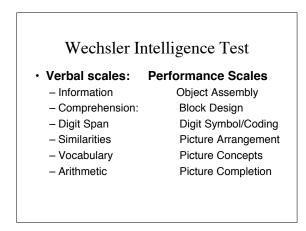
Studies of Cognitive Skill

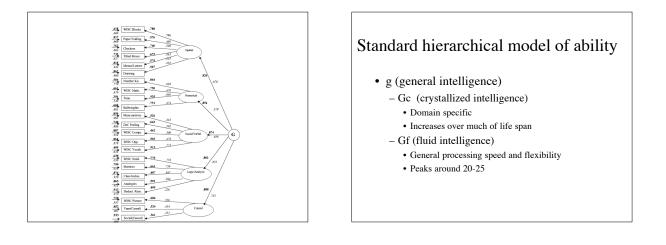
- Individual Differences approach to the study of intelligence
- Experimental/Cognitive Psychology approach to the study of task components

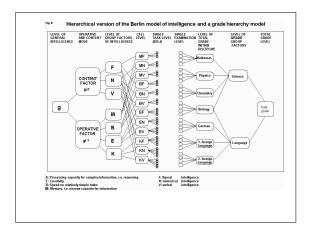
Cognitive Ability and Cognitive Psychology

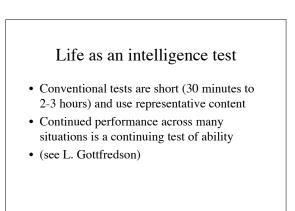

- Ability studies emphasize individual differences and shared variance between divergent tests
 - Little emphasis upon cognitive processes
- Traditional cognitive psychology emphasizes development of processes and distinctions between processes
 - Little emphasis upon individual differences

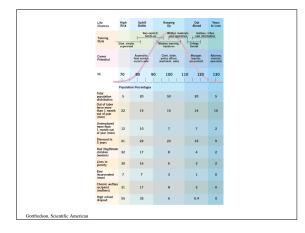


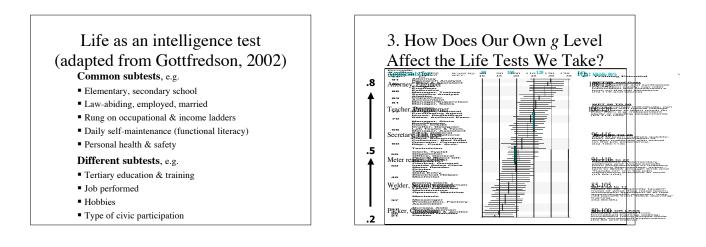

Conventional measures of ability

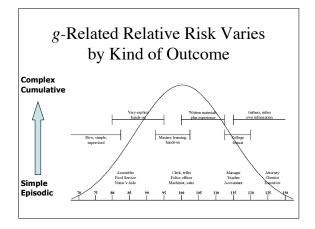

- Wechsler Adult Intelligence Scales – Verbal and Performance subscales
- Raven's Progressive Matrices
- abstract reasoning (culture fair?) • SAT/ACT
 - How much has been learned in 12 years of schooling
 - Vocabulary/quantitative skills

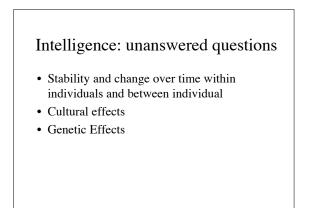

Raven's Progressive Matrices Which one best completes the form?





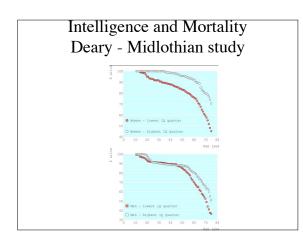






Life as a intelligence test (adapted from Gottfredson, 2002)

High school dropout	133.9
Chronic welfare recipient (female)	10.0
Ever incarcerated (male)	7.5
Lives in poverty	6.2
Had illegitimate child (women)	4.9
Unemployed 1+ mo/yr (male)	1.5
Out of labor force 1+mo/yr (male)	1.4
Divorced in 5 years (ever married)	1.3



The Scottish Longitudinal Study

- June 1, 1932, all children age 11 attending school in Scotland (N=87,498) took a 45 minute IQ test (Moray House Test)
- Followup studies from Ian Deary and his colleagues (N>600) have examined mortality risk, test retest correlations, MRI scans, Alzheimer onset, etc.

Scotland Longitudinal Study

- Test retest (age 11 to age 77) r = .63, corrected for range restriction = .73
- Mean scores on Moray House Test increased from age 11 to age 77 (43 to 54, sd = 11).
- IQ at age 11 predicted relative risk of dying before 80

IQ increases: the "Flynn Effect"

- Although normed for a mean of 100, sd=15, IQ scores have increased over time
 - Comparisons of standardization samples given older and newer tests
- IQ scores on "culture fair" tests have tended to go up about 1 sd/generation
- IQ scores on "crystallized" tests have not increased as much

The Flynn effect: shadows on the wall

- Flynn effect is on observed variables, but what about change on the unobserved?
- Jensen and Plato's cave
 - Latent variables as real heights
 - Observed variables as shadow heights
 - Shadow length is changing (Flynn effect) but are the real heights?

Group differences and heritability

- Group differences of 1 standard deviation
- Heritability within groups of .6-.8
- Is the between group difference genetic?
- Lewontin's pot example
 - Consider a bag of seed, take two random handfuls, put one into a pot with good soil and the other into a pot with fewer nutrients. Within pot differences are all genetic, between pot differences are all environmental.
 Within group heritability implies nothing about
 - between group differences

Stability of personality across time

- · Longitudinal studies
 - Age trends
 - Correlational patterns
 - Absolute changes
- · Cross sectional studies
 - Mean scores as a function of age

Conley's meta analysis of personality stability personality traits. (Nur Year to year correlations (correcting for initial reliability) = .98 20 Years 5 10 30 40 Consistente 90 82 67 55 45 98

Longitudinal studies of personality

- · Jack Block; Lives through Time
- Terri Moffitt and Avshalom Caspi: the Dunedin study
 - Birth cohort in Dunedin, NZ has been followed for 20 years
 - Examining, among other things, risk for impulsivity, criminality, effects of stressful childrearing

Moffitt and Caspi: genes for sensitivity or resilience?

- Effect of child upbringing interacts with specific genes
- Good vs abusive parents
- MAOA gene interacts with parental effects to lead to adult criminality and psychopathology
- 5HTT gene interacts with family effects in relationship childhood and adult depression

Personality Research: Review

- · Individual differences versus experimentalism
- · Theories of individual differences
 - Descriptive taxonomies
 - Folk taxonomies
 - Recent work in folk taxonomy: the Big 5
 - Five Factor Model of Traits

Causal models

Causal Models

· Approach and Inhibitory traits

- Approach/Positive Affect/Positive Emotionality
 Extraversion/impulsivity/Achievement
 - Problems with simple state theories
 - Traits as central tendency of state
 - Traits as likelihood of state
 - Traits as rates of change in state
- Avoidance/Inhibition/negative Emotionality
 - Anxiety/Depression

Personality theory and personality measurement

- If it exists, it exists in some amount ...
- · Issues in measurement
 - Latent constructs observed variables
 - Shape of relationship between latent and observed
 - Reliability of measurement
 - Multiple forms of reliability

Reliability

- How well are we measuring whatever we are measuring?
 - Internal consistency of measuresDomain sampling, true score theory
 - Stability of measures
 - · Traits versus states
 - Alternate forms/alternate people

Validity

- How well are we measuring what we think we are measuring
 - Face, Concurrent, Predictive, Construct
 - Construct
 - Do measures of the same thing go together/
 - Do measures of different things not go together
 - So what (does it make a difference)

Methods of scale construction

- Empirical
- Rational/Theoretical
- Homogeneous
- Do they make a difference? How to do it

Sources of data

- Not limited to simple self report, need to be sensitive to threats to validity from many sources
- Multi-traits multi methods and the principles of convergent and discriminant validity

Final research project

- Introduction
 - Review of relevant literature
 - Why is the problem an interesting problem
- Method
 - Enough to be replicated
- Results
- Appropriate analysisDiscussion
- What does it all mean?
 - what does it all mean?

Final research project

- Additional comments
 - APA style throughout
 - Writing to be yours, thoughts can be shared with research partners (and others)
 - Analysis can be done with me
 - Schedule appointments walk in, email, etc.

Due December 6.