Personality Research

- Current Theories of Personality
- Research Problems in Personality
- Measurement of personality
 - how do we measure the dimensions of personality

1

- what do we measure when we measure
- how well do we measure it

Psychometric Theory for Personality Research

Basic Concepts of Variance, Covariance and Correlation with examples in R

Basic statistics

- Central tendency
 - multiple measures, multiple ways of measuring
- Measures of dispersion
 - Single variables
 - composite variables
- Measures of relationship
 - Bivariate
 - Multivariate

Use of R in personality research

- Powerful stats program available for all platforms
- Examples:
 - <u>why.R</u>.pdf in syllabus
 - <u>http://personality-project.org/r/r.short.html</u>
- How do you get it:
 - go to a CRAN download site (<u>http://www.r-project.org</u>)
 - get the psych package (from r-project.org)

Estimates of Central Tendency

- Consider a set of observations $X = \{x_1, x_2, \dots, x_n\}$
- What is the best way to characterize this set
 - Mode: most frequent observation
 - Median: middle of ranked observations
 Mean:

Arithmetic =
$$\overline{X} = \sum_{1}^{n} (X_i)/N$$

Geometric =
$$\sqrt[n]{\prod_{i=1}^{n} (X_i)}$$

Harmonic = $\frac{N}{\sum_{i=1}^{n} (1/X_i)}$

Alternative expressions of mean

- Arithmetic mean = $\sum x_i/N$
- Alternatives are anti transformed means of transformed numbers
- Geometric mean = $\exp(\sum \ln(x_i)/N)$
 - (anti log of average log)
- Harmonic Mean = reciprocal of average reciprocal
 - $1/(\sum (1/x_i)/N)$

Why all the fuss?

- Consider 1,2,4,8,16,32,64
- Median = 8
- Arithmetic mean = 18.1
- Trimmed mean (20% trim) = 12.4
- Geometric = 8
- Harmonic = 3.5
- trimmed harmonic (20% trim) = 5.16
- Which of these best captures the "average" value?

Summary stats (R code)

- > x < -c(1,2,4,8,16,32,64) #enter the data
- > summary(x) # simple summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

- 1.00 3.00 8.00 18.14 24.00 64.00
- > boxplot(x) #show five number summary

> stripchart(x,vertical=T,add=T) #add in the points

Consider two sets, which is bigger

Subject	X	Y
1	1	10
2	2	11
3	4	12
4	8	13
5	16	14
6	32	15
7	64	16
Median	8	13
Arithmetic	18.1	13
Trimmed	12.4	13
geometric	8.0	12.8
harmonic	3.5	12.7

<pre>Summary stats (R code) > x <- c(1,2,4,8,16,32,64) #enter the data > y <- seq(10,16) #sequence of numbers from 10 to 16 > xy.df <- data.frame(x,y) #create a "data frame"</pre>							
> xy.at #snow the data							
x y 1 1 10							
2 2 11							
3 4 12							
4 8 13 F 10 14							
5 16 14 6 32 15							
7 64 16							
<pre>> summary(xy.df) #basic descriptive stats</pre>							
X y							
Min. : 1.00 Min. :10.0							
1st Qu.: 3.00							
Median : 8.00 Median :13.0							
Mean :18.14 Mean :13.0							
3rd Ou.:24.00 3rd Ou.:14.5							
Max. :64.00 Max. :16.0							

Summary stats (R code)

> describe(xy.df)

	var	n	mean	sd	median	mad	min	max	range	se
х	1	7	18.14	22.94	8	10.38	1	64	63	8.67
У	2	7	13.00	2.16	13	2.97	10	16	6	0.82

round(geometric.mean(xy.df),2) mean(xy.df,trim=.2) x y x y 8.00 12.84 12.4 13.0 round(harmonic.mean(xy.df),2) x y 3.53 12.69

The effect of log transforms Which group is "more"?

X	Y	Log X	LogY
1	10	0.0	2.3
2	11	0.7	2.4
4	12	1.4	2.5
8	13	2.1	2.6
16	14	2.8	2.9
32	15	3.5	2.7
64	16	4.2	2.8

Raw and log transformed which group is "bigger"?

	Х	Y	Log(X)	Log(Y)
Min		10	0	2.30
lst Q.	3	11.5	I.04	2.44
Median	8	13	2.08	2.57
Mean	18.1	13	2.08	2.26
3rd Q.	24	14.5	3.12	2.67
Max	64	16	4.16	2.77

The effect of a transform on means and medians

Which distribution is 'Bigger'

Estimating central tendencies

- Although it seems easy to find a mean (or even a median) of a distribution, it is necessary to consider what is the distribution of interest.
- Consider the problems of the average length of psychotherapy, the average size of a class at NU, or the average velocity of cars on a highway.

Estimating the mean time of therapy

- A therapist has 20 patients, 19 of whom have been in therapy for 26-104 weeks (median, 52 weeks), 1 of whom has just had their first appointment. Assuming this is her typical load, what is the average time patients are in therapy?
- Is this the average for this therapist the same as the average for the patients seeking therapy?

Estimating the mean time of therapy

- 19 with average of 52 weeks, 1 for 1 week
 - Therapists average is (19*52+1*1)/20 = 49.5weeks
 - Median is 52
- But therapist sees 19 for 52 weeks and 52 for one week so the average length is
 - -((19*52)+(52*1))/(19+52) = 14.6 weeks
 - Median is 1

Estimating Class size

5 faculty members teach 20 courses with the following distribution: What is the average class size?

Faculty	100	200	300	400	average
member	fr	so-jr	jr-sr	grad	
1	10	20	10	10	12.5
2	10	20	10	10	12.5
3	10	20	10	10	12.5
4	20	100	20	10	37.5
5	400	100	100	100	175
department	90	52	30	28	50

Estimating class size

- What is the average class size?
- If each student takes 4 courses, what is the average class size from the students' point of view?
- Department point of view: average is 50 students/class

Ν	Size
10	10
5	20
4	100
1	400

Estimating Class size

Faculty	A	В	С	D	average
member					
1	10	20	10	10	12.5
2	10	20	10	10	12.5
3	10	20	10	10	12.5
4	20	100	20	10	37.5
5	400	100	100	100	175
department	90	52	30	28	50

Estimating Class size (student weighted)

Faculty	A	В	С	D	average
member					
1	10	20	10	10	14
2	10	20	10	10	14
3	10	20	10	10	14
4	20	100	20	10	73
5	400	100	100	100	271
Student	357	82	71	74	206

Estimating class size

Department perspective:

20 courses, 1000 students => average = 50

- Student perspective: 1000 students enroll in classes with an average size of 206!
- Faculty perspective: chair tells prospective faculty members that median faculty course size is 12.5, tells the dean that the average is 50 and tells parents that most upper division courses are small.

Traffic Flow

- Three lanes of traffic, uniformly distributed
 - one lane is traveling at 10 mph
 - one lane is travelling at 20 mph
 - one lane is traveling at 30 mph
- What is the average velocity of cars?
- What is the median velocity?

Traffic Flow: But officer, I wasn't speeding

- Three lanes of traffic, uniformly distributed
 - one lane is traveling at 10 mph
 - one lane is travelling at 20 mph
 - one lane is traveling at 30 mph
- Assume cars are spaced a mile apart
 - Average = 30*30 +20*20 +10 *10 = 1400/60 =
 - 23.3
 - Median is 50th percentile -- mid point between
 20 and 30 = 25

Average Velocity

- On a 100 mile trip from Chicago to Milwaukee, you drive the first 50 miles at 30 miles/hour and the second half at 60 miles/hour. What is your average velocity?
- A race car driver has to average 90 miles an hour for two laps of a one mile track. He does the first lap at 45 mph. How fast must he drive the second lap?

Velocity leads to time weighting

- A trip to Milwaukee:
 - -50 miles at 30 mph = 1.66 hours
 - -50 miles at 60 mph = .833 hours.
 - Average is (1.66*30 + .833*60)/2.5 = 40 mph
- Race car driver
 - First lap at $45 \Rightarrow 1.33$ minutes
 - Total time allowed = 120 secs/90 =1.33
 minutes
 - driver can not average 90!

Measures of dispersion

- Range (maximum minimum)
- Interquartile range (75% 25%)
- Deviation score $x_i = X_i$ -Mean
- Median absolute deviation from median
- Variance = $\sum x_i^2/(N-1)$ = mean square
- Standard deviation sqrt (variance) =sqrt($\sum x_i^2/(N-1)$)

Robust measures of dispersion

- The 5-7 numbers of a box plot
- Max
- Top Whisker
- Top quartile (hinge)
- Median
- Bottom Quartile (hinge)
- Bottom Whisker
- Minimum

Raw scores, deviation scores and Standard Scores

- Raw score for i_{th} individual X_i
- Deviation score x_i=X_i-Mean X
- Standard score = x_i/s_x
- Variance of standard scores = 1
- Mean of standard scores = 0
- Standard scores are unit free index

Transformations of scores

- Mean of (X+C) = Mean(X) + C
- Variance (X+C) = Variance(X)
- Variance $(X*C) = Variance(X) *C^2$
- Coefficient of variation = sd/mean

Typical transformations

	Mean	Standard Deviation
Raw data	$X. = \sum X/n$	Sqrt($\sum (X-X.)^2$)/(n-1)= s _x =Sqrt($\sum x^2$)/(n-1)
deviation score	0	S _X
Standard score	0	1
"IQ"	100	15
"SAT"	500	100
"T-Score"	50	10
"stanine"	5	1.5

Variance of Composite

	X	Y
X	Variance _X	Covariance XY
Y	Covariance _{XY}	Variance _Y

Variance $(X+Y) = Var_X + Var_Y + 2 Cov_{XY}$

Variance of Composite

	X	Y
X	$\sum x_i^2/(N-I)$	$\sum x_i y_i / (N-I)$
Y	$\sum x_i y_i / (N-I)$	∑ yi 2/(N-I)

 $Var_{(X+Y)} = \sum (x_i + y_i)^2 / (N-I) = \sum x_i^2 / (N-I) + \sum y_i^2 / (N-I) + 2 \sum x_i y_i / (N-I)$

Consider the following problem

- If you have a GRE V of 700 and a GRE Q of 700, how many standard deviations are you above the mean GRE (V+Q)?
- Need to know the Mean and Variance of V, Q, and V+Q
| | GRE V | GRE | GRE V+Q |
|------|-------|-----|---------|
| | | Q | |
| Mean | 500 | 500 | 1000 |
| | 100 | 100 | |
| SD | 100 | 100 | ? |
| | | | |

Variance of GRE (V+Q)

	GREV	GRE Q
GREV	10,000	6,000
GRE Q	6,000	10,000

Variance of composite = 32,000 => s.d. composite = 179

Variance of GRE (V+Q)

	GRE v	GRE Q	GRE _{V+Q}	
Mean	500	500		1000
SD	100	100		179

Standard score on composite

	GRE v	GRE _Q	GRE _{V+Q}
mean	500	500	1000
sd	100	100	179
raw score	700	700	I 400
z score	2	2	2.23
percentile	97.7	97.7	98.7

Variance of composite of n variables: generalization of variance of x+y

	X ₁	X ₂	•••	X	X	•••	X _n
X ₁	Vx ₁						
x ₂	Cx ₁ x ₂	Vx2					
•••			•••				
X _i	Cx ₁ x _i	Cx ₂ x _i		Vx _i			
X _j	Cx ₁ x _j	Cx ₂ x _j		Cx _i x _i	Vx _j		
•••						• • •	
X _n	Cx ₁ x _n	Cx ₂ x _n		Cx _i x	Cx _j x		Vxn
ance o	 f composi	te of n ite	ms has	n varia	nces and	l n*(n-1) covari

S

Variance, Covariance, and Correlation

- Given two variables, X and Y, can we summarize how they interrelate?
- Given a score x_i , what does this tell us about y_i
- What is the amount of uncertainty in Y that is reduced if we know something about X.
- Example: the effect of daily temperature upon amount of energy consumed per day
- Example: the relationship between anxiety and depression

Distributions of two variables

Joint distribution of X and Y

The problem of summarizing several bivariate relationships

Predicting Y from X

- First order approximation: predict mean Y for all y
- Second order approximation: predict y_i deviates from mean Y as linear function of deviations of x_i from mean X
- $Y_i = Y_i + b_{xy}(X_i X_i)$ or $y_i = b_{xy}(x_i)$
- What is the best value of b_{xy} ?

Predicting Y from X

The problem of predicting y from x:

- •Linear prediction y=bx+c $Y=b(X-M_x) + M_y$
- error in prediction = predicted y observed y
- problem is to minimize the squared error of prediction
- •minimize the error variance = $V_e = [\sum (y_p y_o)^2]/(N-1)$

•
$$V_e = V_{(bx-y)} = \sum (bx-y)^2 / (N-1) =$$

- • $\sum (b^2x^2-2bxy+y^2) / (N-1) =$
- • $b^{2}\sum x^{2}/(N-1)-2b\sum xy/(N-1)+\sum y^{2}/(N-1)==>$
- $\bullet V_e = b^2 V_x 2bC_{xy} + V_y$
- •V_e is minimized when the first derivative (w.r.t. b) = 0 ==>
- •when $2bV_x 2C_{xy} = 0 = =>$
- $b_{y.x}=C_{xy}/V_x$

Measures of relationship

- Regression y = bx + c
 - $-b_{y.x} = Cov_{xy} / Var_x$ $b_{x.y} = Cov_{xy} / Var_y$
- Correlation
 - $r_{xy} = Cov_{xy}/sqrt(V_x * V_y)$
 - Pearson Product moment correlation
 - Spearman (ppmc on ranks)
 - Point biserial (x is dichotomous, y continuous)
 - Phi (x, y both dichotomous)

Correlation and Regression

- Regression slope is in units of DV and IV
 regression implies IV -> DV
 - (gas consumption as function of outside temp)
- Correlation is unit free index of relationship
 - (geometric) average of two regression slopes
 - slope of standardized IV regression on standardized DV => unit free index
 - a measure of goodness of fit of regression

Gas Consumption by degree day (daily data)

Beck Depresion x Trait Anxiety (raw)

BDI x Trait Anx (raw)

Regression lines depend upon scale

Beck Depression * Trait Anxiety z score

Transforming can help

Alternative forms of r

 $r=cov_{xy}/Sqrt(V_x*V_y) =$

 $(\sum xy/N)(\operatorname{sqrt}(\sum x^2/N^*\sum y^2/N) = (\sum xy)(\operatorname{sqrt}(\sum x^{2*}\sum y^2))$

X	Y
Continuous	Continuous
Ranks	ranks
Dichotomous	Continuous
Dichotomous	Dichotomous
Dichotomous (assumed normal)	Continuous
Dichotomous (assumed normal)	Dichotomous (assumed normal
categorical	categorical
	X Continuous Ranks Dichotomous Dichotomous Dichotomous (assumed normal) Categorical (assumed normal)

Correlation Matrix: GRE V, Q, GPA

PEARSON CORRELA	ATION MATRIX GREV	GREQ	GPA4
GREV	1.00	1 00	
GPA4	0.27	0.25	1.00

NUMBER OF OBSERVATIONS: 163

Caution with correlation

Consider 8 variables with means:

xl x2 x3 x4 yl y2 y3 y4 9.0 9.0 9.0 9.0 7.5 7.5 7.5 7.5

and Standard deviations

xl x2 x3 x4 yl y2 y3 y4 3.32 3.32 3.32 3.32 2.03 2.03 2.03 2.03

and correlations between xi and yi of

0.82 0.82 0.82 0.82

Caution with Correlation

Correlation: Alternative meanings

1) Slope of regression $(b_{xy} = C_{xy}/V_x)$ reflects units of x and y but the correlation $\{r = C_{xy}/(S_xS_y)\}$ is unit free.

2) Geometrically, r = cosine (angle between test vectors)

3) Correlation as prediction: Let y_p = predicted deviation score of y = predicted Y - M

 $y_p = b_{xy}x$ and $b_{xy} = C_{xy}/V_x = rS_y/S_x ==> y_p/S_y = r(x/S_x) ==>$

predicted z score of y $(z_{yp}) = r_{xy} * observed z score of x <math>(z_x)$

predicted z score of x $(z_{xp}) = r_{xy} *$ observed z score of y (z_y)

Correlation as goodness of fit

Amount of error variance (residual or unexplained variance) in y given x and r

$$\begin{split} V_{e} &= \sum e^{2}/N = \sum y - bx)^{2}/N = \sum \{y - (r^{*}S_{y}^{*}x/S_{x})\}^{2} = \\ V_{y} + V_{y}^{*}r^{2} - 2(r^{*}S_{y}^{*}C_{xy})/S_{x} \\ & (but S_{y}^{*}C_{xy}/S_{x}^{*} = V_{y}^{*}r^{*}) \\ V_{y} + V_{y}^{*}r^{2} - 2(r^{2}^{*}V_{y}) = V_{y}(1 - r^{2}) = => \\ V_{e} = V_{y}(1 - r^{2}) \qquad <=> \qquad V_{yp} = V_{y}(r^{2}) \end{split}$$

Residual Variance = Original Variance * $(1-r^2)$

Variance of predicted scores = original variance * r^2

Basic relationships

	X	Y	Yр	Residual
Variance	V _x	Vy	V _y (r ²)	$V_y(I-r^2)$
Correl with X		r _{xy}	I	0
Correl with Y	r _{xy}	I	r _{xy}	$\sqrt{(1-r^2)}$

Phi coefficient of correlation

Hit Rate = Valid Positive + False Negative

Selection Ratio = Valid Positive + False Positive

Correlation size ≠ causal importance

	Pregnant	Not Pregnant	Total
Intercourse	2	1,041	1,043
No intercourse	0	6,257	6,257
Total	2	7,298	7,300

Correlation size ≠ causal importance

	Pregnant	Not	Total
		Pregnant	
Intercourse	0.0003	0.1426	0.1429
No intercourse	0.0000	0.8571	0.8571
Total	0.0003	0.9997	1.0000

Phi =(VP - HR*SR) /sqrt(HR*(1-HR)*(SR)*(1-SR)= .04 polychoric rho = .53

Sex discrimination?

	Admit	Reject	Total
Male	40	10	50
Female	10	40	50
Total	50	50	100

Phi =(VP - HR*SR) /sqrt(HR*(1-HR)*(SR)*(1-SR)= -.60 polychoric rho = -.81

Sex discrimination?

	Departi	ment 1		Department 2		
	Admit	Reject	Total	Admit	Reject	Total
Male	40	5	45	0	5	5
Female	5	0	5	5	40	45
Total	45	5	50	5	45	50
Phi	0.11			0.11		
Poo	oled phi		-0.6			

Within group vs Between Group correlation

Phi vs. r the effect of cutpoints

The effect of cut point location r=.73 phi= .50

Phi vs. r the effect of cutpoints (2)

The effect of cut point location r=.73 phi= .18

Phi vs. r: extreme cutpoints

The effect of cut point location r=.73 phi= .03

Continuous and dichotomous scales

GREVV2V21GREQQ2Q2hGREAGPAMAGREV1.000.800.340.730.570.300.640.420.32V20.801.000.150.580.500.180.510.370.23V210.340.151.000.210.150.030.190.150.12GREQ0.730.580.211.000.800.420.600.370.29Q20.570.500.150.801.000.180.450.290.21Q2h0.300.180.030.420.181.000.230.120.10GREA0.640.510.190.600.450.231.000.520.45GPA0.420.370.150.370.290.120.521.000.31MA0.320.230.120.290.210.100.450.311.00

V2, Q2 are cut at 500 V2l is cut at 300 Q2h is cut at 700

Measures of relationships with more than 2 variables

- Partial correlation
 - The relationship between x and y with z held constant (z removed)
- Multiple correlation
 - The relationship of x1 + x2 with y
 - Weight each variable by its independent contribution

Partial and Multiple Correlation

The conceptual problem

 $V_{1.2} = A + D$ $V_{2.1} = E + F$

Partial and Multiple Correlation

$V_1 = A + B + C + D$	$\mathbf{C}_{12} = B + C$	$C_{1Y.2} = D$
$V_2 = E + B + C + F$	$\mathbf{C}_{1\mathbf{Y}} = C + \mathbf{D}$	$C_{2Y.1} = F$
$V_{\rm Y} = D + C + F + G$	$C_{2Y} = C + F$	$\mathbf{C}_{(12)\mathbf{Y}} = \mathbf{D} + \mathbf{C} + \mathbf{F}$
$V_{1.2} = A + D$	$V_{2.1} = E + F$	

Partial and Multiple Correlation: Partial Correlations

 $V_1 = A + B + C + D$ $C_{12} = B + C$ $C_{1Y,2} = D$ $V_2 = E + B + C + F$ $C_{1Y} = C + D$ $C_{2Y,1} = F$ $V_Y = D + C + F + G$ $C_{2Y} = C + F$ $r_{1Y,2} = (r_{1y} - r_{12} * r_{2Y})$ $V_{1,2} = A + D$ $V_{2,1} = E + F$ $sqrt((1 - r_{12}^2) * (1 - r_{y2}^2))$

Partial and Multiple Correlation: Multiple Correlation-correlated predictors

$b_2 = (r_{x2y} - r_{12})$	$r_{1y})/(1-r_{12}^2)$
----------------------------	------------------------

 $R^2 = b_1 r_1 + b_2 r_2$

 $V_{2} = E + B + C + F \qquad C_{1Y} = C + D \qquad C_{2Y,1} = F$ $V_{Y} = D + C + F + G \qquad C_{2Y} = C + F \qquad C_{(12)Y} = D + C + F$ $V_{1,2} = A + D \qquad V_{2,1} = E + F$

Multiple Correlation as an unweighted composite

 $Vx_{1}x_{2} = Vx_{1} + Vx_{2} + 2Cx_{1}x_{2} \qquad R(x_{1}x_{2})y = \frac{C(x_{1}x_{2})y}{Sqrt(Vx_{1}x_{2})*V_{y}}$ $C(x_{1}x_{2})y = Cx_{1}y + Cx_{2}y \qquad Sqrt(Vx_{1}x_{2})*V_{y}$

Multiple Correlation as a weighted composite

Y

 $b_1X_1 = b_2X_2$ b_1X_1 $b_1^2Vx_1$ $b_1b_2Cx_1x_2$ b_1Cx_1y $b_1b_2Cx_1x_2 \mid b_2^2Vx_2$ b_2Cx_2y b_2X_2 b_2Cx_2y Vy b_1Cx_1y Y

 $\mathbf{R}(\mathbf{b}_1\mathbf{x}_1\mathbf{b}_2\mathbf{x}_2)\mathbf{y} =$

 $Vb_1x_1b_2x_2 = b_1^2Vx_1 + b_2^2Vx_2 + 2C b_1b_2Cx_1x_2$ $C(b_1x_1b_2x_2)y=b_1Cx_1y+b_2Cx_2y$

 $C(b_1x_1b_2x_2)$

 $\operatorname{Sqrt}(\operatorname{Vb}_1 x_1 b_2 x_2) * \operatorname{V}_v$

Multiple Correlation as a weighted composite

$$\begin{array}{c|ccccc} b_{1}X_{1} & b_{2}X_{2} & Y \\ \\ b_{1}X_{1} & b_{1}^{2}Vx_{1} & b_{1}b_{2}Cx_{1}x_{2} & b_{1}Cx_{1}y \\ \\ b_{2}X_{2} & b_{1}b_{2}Cx_{1}x_{2} & b_{2}^{2}Vx_{2} & b_{2}Cx_{2}y \\ \\ Y & b_{1}Cx_{1}y & b_{2}Cx_{2}y & Vy \end{array}$$

 $R(b_{1}x_{1}b_{2}x_{2})y = C(b_{1}x_{1}b_{2}x_{2})$ Sqrt(Vb_{1}x_{1}b_{2}x_{2})*V_y $b_{1} = (r_{x1y} - r_{12}*r_{2y})/(1 - r_{12}^{2})$

Problem: Find b1, b2 to maximize R

$$b_2 = (r_{x2y} - r_{12} r_{1y})/(1 - r_{12}^2)$$

Multiple regression: Matrix approach

Matrix Algebra: a review

- Matrix algebra as a convenient notation for statistics
- Consider a matrix _nX_m with n rows and m columns and elements x_{ij}
- Then X' (read X transpose) has m rows and n columns: ${}_{m}X'{}_{n}$ and elements $x_{ij}' = x_{ji}$
- ${}_{m}S_{m} = {}_{m}X'_{n} {}_{n}X_{m}$ is a m * m matrix of the sums (over n) of products with elements = $s_{ij} = \sum x_{ki} * x_{kj}$
- Note that if the number of columns = 1, then X is a vector with n rows. Then X'X = sum squares of x and XX' is a matrix of the products of x

Matrix Algebra: a review (2)

• The identity matrix, _nI_n has 1's on the diagonal and 0 elsewhere.

IX = XI = X

• Matrix multiplication is associative but not commutative:

(XY)Z = X(YZ) but $XY \neq YX$

For a square matrix, X, the inverse, X⁻¹ is that matrix, which when multiplied by X is I:
 X⁻¹ X = X X⁻¹ = I

Matrix Algebra: a review (3)

- Finding the inverse X⁻¹ of X
- X = IX
- multiply both sides by a transformation with the goal of converting the left side to the Identity matrix:
 - $T_1 X = T_1 I X$
 - $-T_2T_1X = T_2T_1IX$ until
 - $-T_n \dots T_2 T_1 X = I = T_n \dots T_2 T_1 I X$ then
 - $-(T_n \dots T_2 T_1)X = I \iff (T_n \dots T_2 T_1) = X^{-1}$

finding the inverse

$1/(1-r^2)$	-r/(I- r ²)
-r/(I- r ²)	1/(1-r ²)

Multiple regression: Matrix approach

- •Y = X * b + e (Y a vector, X a matrix)
- •X'Y = X'X b + X'e
- •Cov_{xy} = $R_{xx}b$ + Cov_{xe} (for standardized X,Y)
- •Find that value of b that minimizes ||e||
- •b =(X'X)^{-| *} X'Y
- •b = $R^{-1}X'Y$
- •If X is a vector, then this is what we have already found: $b = Cov_{xy}/Var_x$
- •The multivariate case is thus just a generalization of the univariate case

Unit weights versus optimal weights -"It don't make no nevermind"

r _{xIx2}	r _{xly}	r _{x2y}	beta l	beta 2	R	R ²	Unit Wt	UW ²
0.0	0.5	0.5	0.50	0.50	0.71	0.50	0.71	0.50
0.3	0.5	0.5	0.38	0.38	0.62	0.38	0.62	0.38
0.5	0.5	0.5	0.33	0.33	0.58	0.33	0.58	0.33
0.7	0.5	0.5	0.29	0.29	0.54	0.29	0.54	0.29
0.3	0.5	0	0.55	-0.16	0.52	0.27	0.31	0.10
0.3	0.5	0.3	0.45	0.16	0.52	0.27	0.50	0.25

If X_1 and X_2 are both positively correlated with Y, then the effect of unit weighting versus optimal (beta) weighting is negligible. But, if one variable is not very good or zero, then unit weighting will not be as effective.

Regression diagnostics

Problems with correlations

- Simpson's paradox and the problem of aggregating groups
 - Within group relationships are not the same as between group or pooled relationships
- Phi coefficients and the problem of unequal marginal distributions
- Alternative interpretations of partial correlations

Partial Correlation: classical model

	X ₁	X ₂	Y
X ₁	1.00		
X ₂	0.72	1.00	
Y	0.63	0.56	1.00

Partial r = $(r_{x1y} - r_{x1x2} + r_{x2y})/sqrt((1 - r_{x1x2} + r_{x2y}))$

Rx1y.x2 = .33 (traditional model) but = 0 with structural model

Find the correlations

round(cor(dataset),2)

#find the correlation matrix #round off to 2 decimals

 GREV GREQ
 GREA
 Ach
 Anx
 Prelim
 GPA
 MA

 GREV
 1.00
 0.73
 0.64
 0.01
 0.01
 0.43
 0.42
 0.32

 GREQ
 0.73
 1.00
 0.60
 0.01
 0.01
 0.43
 0.42
 0.32

 GREQ
 0.73
 1.00
 0.60
 0.01
 0.01
 0.38
 0.37
 0.29

 GREA
 0.64
 0.60
 1.00
 0.45
 -0.39
 0.57
 0.52
 0.45

 Ach
 0.01
 0.01
 0.45
 1.00
 -0.56
 0.30
 0.28
 0.26

 Anx
 0.01
 0.01
 -0.45
 1.00
 -0.23
 -0.22
 -0.22

 Prelim
 0.43
 0.38
 0.57
 0.30
 -0.23
 1.00
 0.42
 0.36

 GPA
 0.42
 0.37
 0.52
 0.28
 -0.22
 0.42
 1.00
 0.31

 MA
 0.32
 0.29
 0.45
 0.26
 -0.22
 0.36
 0.31
 1.00

Measures of relationship

- Regression y = bx + c
 - $-b_{y.x} = Cov_{xy} / Var_x$
- Correlation
 - $r_{xy} = Cov_{xy}/sqrt(V_x * V_y)$
 - Pearson Product moment correlation
 - Spearman (ppmc on ranks)
 - Point biserial (x is dichotomous, y continuous)
 - Phi (x, y both dichotomous)

Measures of relationships with more than 2 variables

- Partial correlation
 - The relationship between x and y with z held constant (z removed)
- Multiple correlation
 - The relationship of x1 + x2 with y
 - Weight each variable by its independent contribution

Problems with correlations

- Simpson's paradox and the problem of aggregating groups
 - Within group relationships are not the same as between group or pooled relationships
- Phi coefficients and the problem of unequal marginals
- Alternative interpretations of partial correlations