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Lord Kelvin’s dictum

 
Taken from Michell (2003) in his critique of psychometrics:
Michell, J. The Quantitative Imperative: Positivism, Naïve Realism and the Place of Qualitative Methods in Psychology, Theory & 
Psychology, Vol. 13, No. 1,  5-31 (2003) 

In physical science a first essential step in the direction of learning 
any subject is to find principles of numerical reckoning and methods 
for practicably measuring some quality connected with it.  I often say 
that when you can measure what you are speaking about and express 
it in numbers you know something about it; but when you cannot 
measure it, when you cannot express it in numbers, your knowledge 
is of a meagre and unsatisfactory kind; it may be the beginning of 
knowledge, but you have scarcely in your thoughts advanced to the 
stage of science, whatever the matter may be.  (Thomsom, 1891)



Psychometric Theory

•  ‘The character which shapes our conduct is a definite 
and durable ‘something’, and therefore  ... it is 
reasonable to attempt to measure it. (Galton, 1884)

• “Whatever exists at all exists in some amount. To 
know it thoroughly involves knowing its quantity as 
well as its quality”  (E.L. Thorndike, 1918)



Psychology and the need 
for measurement

 
Michell, J. The Quantitative Imperative: Positivism, Naïve Realism and the Place of Qualitative Methods in Psychology, Theory & 
Psychology, Vol. 13, No. 1,  5-31 (2003)

• “The history of science is the history of measurement” (J. M. Cattell,  
1893) 

• “We hardly recognize a subject as scientific if measurement is not one 
of its tools” (Boring, 1929)

• “There is yet another [method] so vital that, if lacking it, any study is 
thought ... not be scientific in the full sense of the word.  This further 
an crucial method is that of measurement.” (Spearman, 1937)

• “One’s knowledge of science begins when he can measure what he is 
speaking about and express in numbers” (Eysenck, 1973)



Psychometric Theory: Goals

1.  To acquire the fundamental vocabulary and logic 
of psychometric theory. 

2.  To develop your capacity for critical judgment of 
the adequacy of measures purported to assess 
psychological constructs. 

3.  To acquaint you with some of the relevant 
literature in personality assessment, psychometric 
theory and practice, and methods of observing 
and measuring affect, behavior, cognition and 
motivation. 



Psychometric Theory: Goals II

1. To instill an appreciation of and an interest in the principles 
and methods of psychometric theory.

2. This course is not designed to make you into an accomplished 
psychometist (one who gives tests) nor is it designed to make 
you a skilled psychometrician (one who constructs tests)

3.  It will give you limited experience with psychometric 
computer programs (although all of the examples will use R, it 
not necessary to learn R). 



Psychometric Theory: 
Requirements

• Asking questions!  
• Objective Midterm exam
• Objective Final exam
• Final paper applying principles from the course 

to a problem of interest to you.
• Sporadic applied homework and data sets



Text and Syllabus
• Nunnally, Jum  & Bernstein, Ira (1994) Psychometric 

Theory New York:  McGraw Hill,  3rd ed.(very highly 
recommended) 

• Loehlin, John (2004) Latent Variable Models: an 
introduction to factor, path, and structural analysis 
(4th edition. Hillsdale, N.J.: LEA. (highly 
recommended)

• Revelle, W. An introduction to psychometric theory 
with applications in R (under development - see web)

• http://personality-project.org/r/book
• web guide to class: 

• http://personality-project.org/revelle/syllabi/405.syllabus.html 



Syllabus:  Overview

I. Individual Differences and Experimental Psychology
II. Models of measurement 
III. Test theory 

A. Reliability 
B. Validity (predictive and construct)                    
C. Structural Models 
D. Test Construction

IV. Assessment of traits 
V. Methods of observation of behavior                   



Psychometric Theory: A conceptual Syllabus
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Constructs/Latent Variables 
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Examples of psychological constructs

• Anxiety
– Trait
– State

• Love
• Conformity
• Intelligence
• Learning and memory

– Procedural  - memory for how
– Episodic  -- memory for what

• Implicit
• explicit

• ...



Theory as organization of constructs
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Theories as metaphors and 
analogies-1

• Physics
– Planetary motion

• Ptolemy
• Galileo
• Einstein

– Springs, pendulums, and electrical circuits
– The Bohr atom

• Biology
– Evolutionary theory
– Genetic transmission



Theories as metaphors and 
analogies-2

• Business competition and evolutionary theory
– Business niche
– Adaptation to change in niches

• Learning, memory, and cognitive psychology
– Telephone as an example of wiring of connections
– Digital computer as information processor
– Parallel processes as distributed information 

processor



Models and theory
• Formal models

– Mathematical models
– Dynamic models - simulations

• Conceptual models
– As guides to new research
– As ways of telling a story

• Organizational devices



Observable or measured variables
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Observed Variables

• Item Endorsement

• Reaction time

• Choice/Preference

• Blood Oxygen Level Dependent Response

• Skin Conductance

• Archival measures



Theory development and 
testing

• Theories as organizations of observable variables
• Constructs, latent variables and observed variables

– Observable variables
• Multiple levels of description and abstraction
• Multiple levels of inference about observed variables

– Latent Variables
• Latent variables as the common theme of a set of observables
• Central tendency across time, space, people, situations

– Constructs as organizations of latent variables and observed 
variables



Psychometric Theory: A conceptual Syllabus
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A Theory of Data: What can be measured

X1 L1

What is measured?
	

 	

 Objects
	

 	

 Individuals
	

 	


What kind of measures are taken?
	

 	

 Order
	

 	

 Proximity
	

 	


What kind of comparisons are made?
	

 	

 Single Dyads
	

 	

 Pairs of Dyads



Scaling: 
the mapping between observed and latent variables

X1 L1

Latent Variable

Observed 
Variable



Variance, Covariance, and Correlation
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Techniques of Data Reduction: 
Factor and Components Analysis
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Classic Reliability Theory: How well do we 
measure what ever we are measuring
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Modern Reliability Theory: Item Response Theory
How well do we measure what ever we are measuring
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Types of Validity: What are we measuring
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Structural Equation Modeling: Combining 
Measurement and Structural Models
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Scale Construction: practical and theoretical
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Traits and States: What is measured?
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The data box: measurement across time, 
situations, items, and people
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Psychometric Theory: A conceptual Syllabus
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Syllabus:  Overview
I. ! Individual Differences and Experimental Psychology

A. Two historic approaches to the study of psychology
B. Individual differences and general laws
C. The two disciplines reconsidered

II. Models of measurement 
A. Theory of Data
B. Issues in scaling
C. Variance, Covariance, and Correlation
D. Dimension reduction: Factor, Component and Cluster analysis

III.  Test theory 
A. Reliability 
B. Validity (predictive and construct)                    
C. Structural Models 
D. Test Construction

IV. Assessment of traits 
V. Methods of observation of behavior                   



Two Disciplines of Psychological Research
Cronbach, (1957, 1975); Eysenck  (1966, 1997), Revelle & Oehlberg (2009)

B = f(Personality) B = f(P*E) B = f(Environment)
 Darwin  

Galton  Fechner, Weber, Wundt

Binet, Terman  Watson, Thorndike

Allport, Burt Lewin Hull, Tolman

Cattell Atkinson, Eysenck Spence, Skinner

Epstein, Norman, 
Goldberg, Costa, 
McCrae

 Mischel
Cervone



Two Disciplines of Psychological Research

 B=f(Person) B=f(Environment)
Method/
Model

Correlational
Observational
Biological/field

Experimental
Causal

Physical/lab
Statistics Variance

Dispersion
Correlation/ Covariance

Mean
Central Tendency

t-test, F test
Effects Individuals

Individual Differences
Situations

General Laws
 B=f(P,E)

Effect of individual in an environment
Multivariate Experimental Psychology



  

Experimental 
Personality 
Research
involves 
theory, 

measurement 
and 

experimental 
technique
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Experimental 
Personality 
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Experimental 
Personality 
Research
involves 
theory, 

measurement 
and 

experimental 
technique
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Theory and Theory Testing I:
Theory

Construct  1 Construct  2
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Theory and Theory Testing II:
Experimental manipulation
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Theory and Theory Testing III:
Correlational inference
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Theory and Theory Testing IV:
Correlational inference
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Theory and Theory Testing V:
Alternative Explanations
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Individual differences and general 
laws

Impulsivity
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Theory and Theory Testing VI:
Eliminate Alternative Explanations
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Observation 2

45



Types of Relationships
(Vale and Vale, 1969)

• Behavior = f(Situation)
• Behavior = f1(Situation)+ f2(Personality)
• Behavior = f1(Situation)+f2(Personality)+ 

f3(Situation*Personality)
• Behavior = f1(Situation * Personality)
• Behavior = idiosyncratic



Types of Relationships:
Behavior = f(Situation)

Environmental Input
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Types of Relationships:
Behavior = f1(Situation)+f2(Person)

Environmental Input (income)
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Types of Relationships:
Behavior = f1(Situation)+f2(Personality)

+f3(Situation*Personality)

High

Environmental Input

Be
ha

vi
or

al
 O

ut
pu

t

Avoidance = f1(shock intensity)+f2(anxiety) + f3(shock*anxiety)
Reading = f1(sesame street)  = f2(ability) + f3(ss * ability)

Low



Types of Relationships:
Behavior = f(Situation*Person)
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Eating = f(preload * restraint)

Environmental Input

GRE = f(caffeine * impulsivity)

High

Low



Types of Relationships:
Behavior = f(Situation*Person)

Environmental Input
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GRE = f(caffeine * impulsivity)

Low High



Persons, Situations, and Theory

External stimulation->

External stimulation->

Arousal

Arousal->
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Individual Difference General Law
Theoretical model



Psychometric Theory: A conceptual Syllabus

X1

X2

X3

X4

X5

X6

X7

X8

X9

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

L1

L2

L3

L4

L5



Data = Model + Residual

In all of psychometrics and statistics, five questions to 
ask are:

1. What is the model?

2. How well does it fit?

3. What are the plausible alternative models?

4. How well do they fit?

5. Is this better or worse than the current fit?



A Theory of Data: What can be measured

X1 L1

What is measured?
	

 	

 Objects
	

 	

 Individuals
	

 	


What kind of measures are taken?
	

 	

 Proximity  (- distance)
	

 	

 Order
	

 	


What kind of comparisons are made?
	

 	

 Single Dyads
	

 	

 Pairs of Dyads



Assigning numbers to 
observations

2.718281828459050 3,412.1416

3.141592653589790 86,400

24 31,557,600

37 299,792,458

98.7 6.022141 *1023

365.25 42

365.25636305 X



Assigning numbers to 
observations: order vs. proximity

• Suppose we have observations X, Y, Z

• We assume each observation is a point on an 
attribute dimension (see Michell for a critique of the 
assumption of quantity) .

• Assign a number to each point.

• Two questions to ask:

• What is the order of the points?

• How far apart are the points? 



Scaling of objects
• Consider O = { o1, o2, ... on} and 

• O x O ={(o1, o1), (o1, o2), ... (o1, on),..., (o2, on), ... ,
(on, on)}

• Can we assign scale values to objects that satisfy 
an order relationship  “≤” 

• oi ≤ oj and oi ≥ oj   <=> oi=oj

• oi ≤ oj and oj ≤ ok <=> oi ≤ ok (transitive)



Moh’s index of hardness

Note the strong non-linearity of the top end of the scale



The Beaufort Scale

Roughly linear with windspeed, but force of wind is 
quadratric effect of wind speed



Scaling of objects
subjects as replicates

• Typical object scaling is concerned with 
order or location of objects

• Subjects are assumed to be random replicates 
of each other, differing only as a source of 
noise



Absolute scaling techniques

• “On a scale from 1 to 10”  this ... is a ___?

• If A is 1 and B is 10, then what is C?

• College rankings based upon selectivity

• College rankings based upon “yield”

• Zagat ratings of restaurants



Absolute scaling difficulties

• “On a scale from 1 to 10”  this ... is a ___?

• sensitive to context effects

• what if a new object appears?

• Need unbounded scale

• If A is 1 and B is 10, then what is C?

• results will depend upon A, B



Absolute scaling: artifacts

• College rankings based upon selectivity

• accept/applied  

• encourage less able to apply

• College rankings based upon “yield”

• matriculate/accepted

• early admissions guarantee matriculation

• don’t accept students who will not attend



College admission tricks

Avery, C., Glickman, M, Hoxby, C., & Metrick, A.  (2004) A revealed preference ranking 
of U.S. colleges and universities. http://www.nber.org/papers/w10803

(see also Avery, C., Glickman, M, Hoxby, C., & Metrick, A, 2013)

Increase the yield by rejecting students likely to go 
elsewhere.



Models of scaling objects
• Assume each object (a, b,...z) has a scale 

value (A, B, ... Z) with some noise for each 
measurement.

• Probability of A > B increases with 
difference of between a and b 

• P(A>B) = f(a - b)

• Can we find a function, f, such that equal 
differences in the latent variable (a, b, c) 
lead to equal differences in the observed 
variable?



Models of scaling

• Given latent scores (a, b, ... z) find observed 
scores A=f(a), B = f(b), ... Z = f(z) such that iff   
a > b then A > B (an ordinal scale)

• Given latent scores (a, b, ... z) find observed 
scores A=f(a), B = f(b), ... Z = f(z) such that iff  
a-b > c-d then A-B > C - D (an interval scale)

• Given latent scores (a, b, ... z) find observed 
scores A=f(a), B = f(b), ... Z = f(z) such that iff  
a/b > c/d then A/B > C/ D (a ratio scale)



Thurstonian Scaling of Stimuli
• What is scale location of objects I and J on an 

attribute dimension D?
• Assume that object I has mean value mi with some 

variability.
• Assume that object J has a mean value mj
• Assume equal and normal variability (Thurstone 

case 5)
– Less restrictive assumptions are cases 1-4

• Observe frequency of (oi <oj)
• Convert relative frequencies to normal equivalents
• Result is an interval scale with arbitrary 0 point



Thurstonian Scaling
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x3 0.1 0.3 0.5

p(col > row)



Thurstone comparative 
judgment
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Thurstone scaling:step 1: choice
> data(vegetables)
> round(veg,2)

        Turn  Cab Beet  Asp  Car Spin S.Beans Peas Corn
Turn    0.50 0.82 0.77 0.81 0.88 0.89    0.90 0.89 0.93
Cab     0.18 0.50 0.60 0.72 0.74 0.74    0.81 0.84 0.86
Beet    0.23 0.40 0.50 0.56 0.74 0.68    0.84 0.80 0.82
Asp     0.19 0.28 0.44 0.50 0.56 0.59    0.68 0.60 0.73
Car     0.12 0.26 0.26 0.44 0.50 0.49    0.57 0.71 0.76
Spin    0.11 0.26 0.32 0.41 0.51 0.50    0.63 0.68 0.63
S.Beans 0.10 0.19 0.16 0.32 0.43 0.37    0.50 0.53 0.64
Peas    0.11 0.16 0.20 0.40 0.29 0.32    0.47 0.50 0.63
Corn    0.07 0.14 0.18 0.27 0.24 0.37    0.36 0.37 0.50



Thurstone scaling: step 2: 
normal transformation

> normal.values <- qnorm(as.matrix(veg))
> round(normal.values,2)

         Turn   Cab  Beet   Asp   Car  Spin S.Beans  Peas Corn
Turn     0.00  0.91  0.74  0.88  1.17  1.24    1.28  1.24 1.45
Cab     -0.91  0.00  0.26  0.59  0.65  0.63    0.88  1.02 1.07
Beet    -0.74 -0.26  0.00  0.15  0.63  0.46    1.02  0.83 0.91
Asp     -0.88 -0.59 -0.15  0.00  0.15  0.22    0.46  0.26 0.61
Car     -1.17 -0.65 -0.63 -0.15  0.00 -0.02    0.19  0.55 0.72
Spin    -1.24 -0.63 -0.46 -0.22  0.02  0.00    0.33  0.47 0.33
S.Beans -1.28 -0.88 -1.02 -0.46 -0.19 -0.33    0.00  0.07 0.36
Peas    -1.24 -1.02 -0.83 -0.26 -0.55 -0.47   -0.07  0.00 0.33
Corn    -1.45 -1.07 -0.91 -0.61 -0.72 -0.33   -0.36 -0.33 0.00



Thurstone Step 3:
average z score and rescale

Sums of z scores
Average z score
Rescale to set minimum to 0 

Goodness of fit test: 1-residual2/original2 = .99

         sums means values
Turn    -8.89 -0.99   0.00
Cab     -4.19 -0.47   0.52
Beet    -3.00 -0.33   0.65
Asp     -0.07 -0.01   0.98
Car      1.16  0.13   1.12
Spin     1.40  0.16   1.14

S.Beans  3.71  0.41   1.40
Peas     4.10  0.46   1.44

Corn     5.77  0.64   1.63

> sums <- colSums(normal.values) 
> means <- colMeans(normal.values) 
> values <- means - min(values)
> thurstone.df <- data.frame(sums,means,values)
> round(thurstone.df,2)



Create a function to do this
> thurstone
function (x, ranks = FALSE, digits = 2) 
{
    cl <- match.call()
    if (ranks) {
        choice <- choice.mat(x)
    }
    else {
        if (is.matrix(x)) 
            choice <- x
        choice <- as.matrix(x)
    }
    scale.values <- colMeans(qnorm(choice)) -  
min(colMeans(qnorm(choice)))
    model <- pnorm(-scale.values %+% t(scale.values))
    error <- model - choice
    fit <- 1 - (sum(error * error)/sum(choice * choice))
    result <- list(scale = round(scale.values, digits), GF = fit, 
        residual = error, Call = cl)
    class(result) <- c("psych", "thurstone")
    return(result)
}



Thurstone Model
> veg.scale <- thurstone(veg)  #Apply our new function
> veg.scale
Thurstonian scale (case 5) scale values 
Call: thurstone(x = veg)
   Turn     Cab    Beet     Asp     Car    Spin S.Beans    Peas    Corn 
   0.00    0.52    0.65    0.98    1.12    1.14    1.40    1.44    1.63 

 Goodness of fit of model   0.99

> values <- veg.scale$scale
> model <-   -values %+% t(values)
> colnames(model) <- rownames(model) <- names(values)
> model

         Turn   Cab  Beet   Asp   Car  Spin S.Beans  Peas Corn
Turn     0.00  0.52  0.65  0.98  1.12  1.14    1.40  1.44 1.63
Cab     -0.52  0.00  0.13  0.46  0.60  0.62    0.88  0.92 1.11
Beet    -0.65 -0.13  0.00  0.33  0.47  0.49    0.75  0.79 0.98
Asp     -0.98 -0.46 -0.33  0.00  0.14  0.16    0.42  0.46 0.65
Car     -1.12 -0.60 -0.47 -0.14  0.00  0.02    0.28  0.32 0.51
Spin    -1.14 -0.62 -0.49 -0.16 -0.02  0.00    0.26  0.30 0.49
S.Beans -1.40 -0.88 -0.75 -0.42 -0.28 -0.26    0.00  0.04 0.23
Peas    -1.44 -0.92 -0.79 -0.46 -0.32 -0.30   -0.04  0.00 0.19
Corn    -1.63 -1.11 -0.98 -0.65 -0.51 -0.49   -0.23 -0.19 0.00



Thurstone: model

> model <- pnorm(model) #convert Z scores to probability
> round(model,2)

        Turn  Cab Beet  Asp  Car Spin S.Beans Peas Corn
Turn    0.50 0.70 0.74 0.84 0.87 0.87    0.92 0.93 0.95
Cab     0.30 0.50 0.55 0.68 0.73 0.73    0.81 0.82 0.87
Beet    0.26 0.45 0.50 0.63 0.68 0.69    0.77 0.79 0.84
Asp     0.16 0.32 0.37 0.50 0.56 0.56    0.66 0.68 0.74
Car     0.13 0.27 0.32 0.44 0.50 0.51    0.61 0.63 0.69
Spin    0.13 0.27 0.31 0.44 0.49 0.50    0.60 0.62 0.69
S.Beans 0.08 0.19 0.23 0.34 0.39 0.40    0.50 0.52 0.59
Peas    0.07 0.18 0.21 0.32 0.37 0.38    0.48 0.50 0.58
Corn    0.05 0.13 0.16 0.26 0.31 0.31    0.41 0.42 0.50



Thurstone: Data-Model

> error <- veg - model
> round(error,2)

         Turn   Cab  Beet   Asp   Car  Spin S.Beans  Peas  Corn
Turn     0.00  0.12  0.03 -0.03  0.01  0.02   -0.02 -0.03 -0.02
Cab     -0.12  0.00  0.05  0.05  0.02  0.00    0.00  0.02 -0.01
Beet    -0.03 -0.05  0.00 -0.07  0.06 -0.01    0.07  0.01 -0.02
Asp      0.03 -0.05  0.07  0.00  0.01  0.02    0.01 -0.08 -0.01
Car     -0.01 -0.02 -0.06 -0.01  0.00 -0.02   -0.04  0.08  0.07
Spin    -0.02  0.00  0.01 -0.02  0.02  0.00    0.03  0.06 -0.06
S.Beans  0.02  0.00 -0.07 -0.01  0.04 -0.03    0.00  0.01  0.05
Peas     0.03 -0.02 -0.01  0.08 -0.08 -0.06   -0.01  0.00  0.05
Corn     0.02  0.01  0.02  0.01 -0.07  0.06   -0.05 -0.05  0.00



Summarize Residuals

 describe(error,skew=FALSE)

        var n  mean   sd median trimmed  mad   min  max range   se
Turn      1 9 -0.01 0.05   0.00   -0.01 0.03 -0.12 0.03  0.15 0.02
Cab       2 9  0.00 0.05   0.00    0.00 0.02 -0.05 0.12  0.17 0.02
Beet      3 9  0.00 0.05   0.01    0.00 0.04 -0.07 0.07  0.14 0.02
Asp       4 9  0.00 0.04  -0.01    0.00 0.03 -0.07 0.08  0.14 0.01
Car       5 9  0.00 0.05   0.01    0.00 0.01 -0.08 0.06  0.14 0.02
Spin      6 9  0.00 0.03   0.00    0.00 0.03 -0.06 0.06  0.12 0.01
S.Beans   7 9  0.00 0.04   0.00    0.00 0.03 -0.05 0.07  0.12 0.01
Peas      8 9  0.00 0.05   0.01    0.00 0.06 -0.08 0.08  0.16 0.02
Corn      9 9  0.01 0.04  -0.01    0.01 0.02 -0.06 0.07  0.13 0.01



Find fit

• Many indices of fit

• Typical is 1-error2/data2

• Fit of Thurstone = 

• > 1-sum(error^2)/sum(veg^2)

• [1] 0.99



Alternative scaling 
models

• Thurstone assumes normal deviations

• Logistic model produces similar results

• used in scaling chess players, sports teams 

• win/loss record

• scaling of colleges by where students choose 
to go (choice of A vs. B)

• more difficult to fake



Compare to other 
scaling methods

• Thurstone assumes normal error of preference

• logistic model is alternative model

• so are other rank difference models

• all about the same in terms of fit



At least two ways to 
collect choice data

• Paired comparisons: 

• Is X > Y

• Is Y > Z

• ...  n*(n-1)/2 pairs

• Rank orders (X>Y>Z>W) => a set of pairs 

• X>Y,  X>Z,  Y>Z,  X>W,  Y> W,  Z>W



Thurstonian scaling in R
• code for Thurstonian case V is in psych 

• data(vegetables)

• thu <- thurstone(veg)

• thu   #shows values and fits

• thu$residual  #shows residuals

• brief discussion of Thurstonian and alternative 
scaling models with links at

• http://personality-project.org/r/thurstone.html



What is this thing called R?

• A quick introduction to R: gettingstarted   

• personality-project.org/r/psych



Assigning numbers: do 
they form a metric space?

• Suppose we have observations X, Y, Z

• We assume each observation is a point on 
(possibly many) attribute dimension(s)

• Assign a number to each point.

• Do these numbers form a metric space?

• Requires finding a distance between points 



Metric spaces and the axioms 
of a distance measure

• A metric space is a set of points with a distance 
function, D, which meets the following properties

• Distance is symmetric, positive definite, and satisfies 
the triangle inequality:
– D(X, Y) = D(Y, X)	

 	

 (symmetric)
– D(X,Y) ≥ 0	

 	

 	

 (non negativity)
– D(X,Y) = 0 iff X=Y	

  (D(X,X)=0 reflexive)
– D(X,Y) + D(Y,Z) ≥ D(X,Z)    (triangle inequality)



Two unidimensional 
metric spaces

X Y Z

X 0 1 2

Y 1 0 1

Z 2 1 0

att 1 2 3

X Y Z

X 0 3 8

Y 3 0 5

Z 8 5 0

att 1 4 9



Multidimensional spaces using 
alternative metrics

X Y Z W
X 0 3 5 4
Y 3 0 4 5
Z 5 4 0 3
W 4 5 3 0

Euclidian

X Y Z W
X 0 3 7 4
Y 3 0 4 7
Z 7 4 0 3
W 4 7 3 0

City block

X Y

ZW



A non metric space

X Y Z

X 0 1 2

Y 1 0 2

Z 0 0 0

att 1 1 4



Multidimensional scaling
• Given a n * n distance matrix, is it possible to 

represent the data in a k dimensional space?

• How well does that model fit?

• How sensitive is the model to transformations of the 
original distances?

• Need to find distances

• absolute distance between pairs

• ranks of distances between pairs of pairs 



Distances between US cities
    ATL  BOS  ORD  DCA  DEN  LAX  MIA  JFK  SEA  SFO  MSY
ATL    0  934  585  542 1209 1942  605  751 2181 2139  424
BOS  934    0  853  392 1769 2601 1252  183 2492 2700 1356
ORD  585  853    0  598  918 1748 1187  720 1736 1857  830
DCA  542  392  598    0 1493 2305  922  209 2328 2442  964
DEN 1209 1769  918 1493    0  836 1723 1636 1023  951 1079
LAX 1942 2601 1748 2305  836    0 2345 2461  957  341 1679
MIA  605 1252 1187  922 1723 2345    0 1092 2733 2594  669
JFK  751  183  720  209 1636 2461 1092    0 2412 2577 1173
SEA 2181 2492 1736 2328 1023  957 2733 2412    0  681 2101
SFO 2139 2700 1857 2442  951  341 2594 2577  681    0 1925
MSY  424 1356  830  964 1079 1679  669 1173 2101 1925    0

cities



Multidimensional Scaling

Dimension 1 Dimension 2

ATL -571 248
BOS -1061 -548
ORD -264 -251
DCA -861 -211
DEN 616 10
LAX 1370 376
MIA -959 708
JFK -970 -389
SEA 1438 -607
SFO 1563 88
MSY -301 577

cmdscale(cities)

round(cmdscale(cities),0)



Spatial representation
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> cit <-cmdscale(cities)
> plot(cit,typ="n")
> text(cit,rownames(cit))



A more familiar map
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> plot(-cit,typ="n",main="MDS of cities")
> text(-cit,rownames(cit))



Compare with classic solution



MDS is not perfect
MultiDimensional Scaling of US cities

ATL

BOS

ORD
DCA

DEN

LAX

MIA

JFK

SEA

SFO

MSY



R code for MDS
• http://personality-project.org/r/mds.html

• compare cmdscale (metric mds) with isoMDS (non-
metric scaling)

• ALSCAL and KYST are standard packages in SPSS

• Individual Differences models of MDS include 
INDSCAL and INDIFF

• ALSCAL is now available in R



Metric scaling of 28 
European cities

loc <- cmdscale(eurodist)
x <- loc[,1]
y <- -loc[,2]
plot(x, y, type="n", xlab="", ylab="", main="cmdscale(eurodist)")
text(x, y, names(eurodist), cex=0.8)



Types of data collected vs. 
types of questions asked
• Ask Si about

• O 

• O x O

• infer

• O x O

• (O x O) x (O x O)

• S x O

s1 ... sn o1 ... on

s1

...
sn

o1

...
on



Coombs: A theory of Data
• O = {Stimulus Objects}    S={Subjects}
• O = {o1, o2, …, oi, …, on}

• S = {s1, s2, …, si, …, sm}

• S x O = {(s1, o1 ) ,(si,oj), … , (sm, on)}

• O x O = {(o1, o1 ) ,(oi,oj), … , (on, on)}

• Types of Comparisons:
– Order	

 	

  si <oj   	

 (aptitudes or amounts)       
–  Proximities	

 |si -oj | < d  (preferences )



Coombs typology of data
Single Dyads Pairs of Dyads
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Measurement   (S*O)
si <oj

(Abilities)|si -oj | < d
(attitudes)

|si -oj | < 
|sk -ol |

Unfolding (S*O)*(S*O)
Preferential choice 

oi <oj

Scaling of stimuli
(O * O) 

MDS
(O*O)*(O*O)

|oi -oj | < |ok -ol |

Individual differences in
Multidimensional Scaling

S * (O*O) * (O*O)



Coombs’ typology
• O x O   (oi < oj )   Scaling

• (OxO) x (OxO)   |oi - oj| <  |ok - ol|   MDS

• S x O   (two types of comparisons)    

• (si < oj)    measurement of ability

• |si - oj| < d  measurement of attitude

• (SxO) x (SxO) preferential choice

• |si - oj| <  |sk - ol|  or |si - oj| <  |si - ol|



Preferential Choice and Unfolding
(S * O) * (S*O)

Comparison of the distance of subject to an item versus 
another subject to another item:

|si -oj | < |sk -ol |

Do you like broccoli more than I like spinach?
Or more typically: do you like broccoli more than you 

like spinach? |si -oj | < |si -ol |

Preferential choice and Unfolding (S*O)*(S*O)



Preferential Choice: 
Individual (I) scales

• Question asked an individual:
– Do you prefer object j to object k?

• Model of answer: 
– Something is preferred to something else if if it “closer” in 

the attribute space or on a particular attribute dimension
– Individual has an “Ideal point” on the attribute.
– Objects have locations along the same attribute
– |si -oj | < |si -ok |

– The I scale is the individual’s rank ordering of preferences



Preferential Choice: J 
scales

• Individual preferences can give information 
about object to object distances that are true for 
multiple people

• Locate people in terms of their I scales along a 
common J scale.



Preferential Choice: free 
choice

• If you had complete freedom of choice, how 
many children would you like to have?  _X_

• If you could not have that many, what would 
your second choice be?  _Y_

• Third choice?   _Z_ 
• Fourth choice?  -W-
• Fifth choice?   _V_



Preferential Choice: 
forced choice

1. If you had complete freedom of choice, how many 
children would you like to have?  _X_

2. If you could not have X, would you rather have X
+1 or X-1  (Y).

3. If could not have X or Y, would you rather have 
(min(X,Y)-1) or max (X,Y)+1. (Z)

4. If you could have X, Y or Z, would you rather 
have min(X,Y,Z)-1 or max (X,Y, Z)+1

5. Repeat (4) until either 0 or 5



Preferential choice- 
underlying model

• On a scale from 0 to 100, if 0 means having 0 
children, and 100 means having 5 children, 
please assign the relative location of 1, 2, 3,  
and 4 children.  

• On this same scale, please give your 
preferences for having 0, 1, 2, 3, 4, or 5 
children.



Questions about Scale 
Ratings

• Do subjects understand instructions?
• Can people give accurate representations of 

scale value to objects?
• Can we find subject locations in preferential 

space?



Alternative Joint scales
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4 Individual scales from the 
accelerating Joint scale 
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Individual scales from the 
deaccelerating Joint scale
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Individual scales from 
two Joint scales
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Unfolding of 
Preferences

• Consider the I scale  234105
• What information has this person given us?
• Unfold to give J scale 
• Ideal point is closest to 2, furthest from 5.
• J scale of 
• 0                          1           2            3        4  5
• Critical information: 2|3 occurs after 1|4     



Joint scales, Points and 
Midpoints

Objects and Midpoints

Object Values

0 20 40 60 80 100

0 1 2 3 4 5

0 1

0 2 1 2

0 3 1 3

/Users/Bill

2 3

0 4 1 4 2 4 3 4

0 5 1 5 2 5 3 54 5



Joint scales, Points and Midpoints
Accelerating scale

Objects and Midpoints

Object Values

0 20 40 60 80 100

0 1 2 3 4 5

0 1

0 21 2

0 31 32 3

0

/Users/Bill

41 42 4 3 4

0 51 52 5

/Users/Bill

3 5 4 5



I scales and midpoints 
example 1

• Preference Orders:! ! Midpoints crossed! ! !
• (Individual Scales)

0 1 2 3 4  
1 0 2 3 4! 01
1 2 0 3 4! 01  02
1 2 3 0 4! 01  02  03
1 2 3 4 0! 01  02  03  04
2 1 3 4 0 ! 01  02  03  04  12
2 3 1 4 0 ! 01  02  03  04  12  13
2 3 4 1 0! 01  02  03  04  12  13  14
3 2 4 1 0! 01  02  03  04  12  13  14  23
3 4 2 1 0! 01  02  03  04  12  13  14  23  24
4 3 2 1 0! 01  02  03  04  12  13  14  23  24  34



I scales and Midpoints: Example 2

• Preference Orders:! ! Midpoints crossed! ! ! !
• (Individual Scales)
0 1 2 3 4  
1 0 2 3 4       01
1 2 0 3 4       01!  02
2 1 0 3 4       01!  02    12
2 1 3 0 4       01!  02    12    03
2 3 1 0 4       01!  02    12    03    13
3 2 1 0 4       01!  02    12    03    13    23
3 2 1 4 0       01!  02    12    03    13    23    04
3 2 4 1 0       01   02    12    03    13    23    04    14
3 4 2 1 0       01!  02    12    03    13    23    04    14    24
4 3 2 1 0       01!  02    12    03    13    23    04    14    24    34



Distance information from midpoints

• Let x|y   mean midpoint of x and y then the 
ordering of the midpoints provides information

• Consider: 
• 1                            1|4                              4
•           2       2|3       3                           vs
•                           2            2|3        3
• Midpoint orders imply distance information
• If 2|3<1|4  then   (12)  < (34)
• If 2|3 >1|4 then   (12)> (34)



From midpoints to 
partial orders

• ! Data example 1
• 0|3 < 1|2 <=> (01) > (23)
• 0|4 < 1|2 <=> (01) > (24)
• 0|4 < 1|3 <=> (01) > (34)
• 0|4 < 2|3 <=> (02) > (34)
• 1|4 < 2|3 <=> (12) > (34)

• Partial Orders of distances
• (04) > (03) > (02) > (12) > (34)
• (04) > (03) > (02) > (01) > (24) > (34)
• (04) > (03) > (02) > (01) > (24) > (23)!  



Family size Joint scale
fitted from class data

• Alternative models:

• Accelerating differences between children

• De-accelerating differences

• Equal spaced differences



405 data I scales and Midpoints
Count	
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Partial metric information:
Midpoint orders implies 

order of distance
Midpoint order distance
12 03 <=> (01)<(23)
23 04 <=> (02)<(34)
24 15 <=> (12)<(45)
34 25 <=> (23)<(45)
05 24 <=> (45)<(02)
24 15 <=> (12)<(45)



Partial orders
(01)<(23) (23)<(45) (45)<(02) (02)<(34)
(01)<(02) (02)<(34)

(01)<(23)<(45)<(02)<(34)
          (12)<(45)<(02)<(34)

Distances as deltas
0 1 2 3 4 5

a+b b+c+d a+b+c a+2b+c+d+e a+b+c+d



3 a priori models
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3 a priori + 1 fitted model
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3 prior + 1 fitted models and 
implied midpoint orders
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The range of acceptable fits 
versus a priori models
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Measurement (S * O)
• Ordering of  abilities: si <oj
	

 Is a subject less than an object (i.e. does the subject miss the 

item).  
	

 Order the items in terms of difficulty, and subjects in terms of 

ability.
	

 example: high jump or cognitive ability test

• Proximity of attitudes |si -oj | < d
	

 Subject agrees (endorses) an item if d < some threshold
	

 Subject rejects the item if d > threshold



Error free models of ability:
The Guttman scale
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Error models of ability:
Normal Ogive/Logistic of order
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Measuring Attitudes: distance 
from ideal point => unfolding
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Coombs typology of data
Single Dyads Pairs of Dyads
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Measurement   (S*O)
si <oj

(Abilities)|si -oj | < d
(attitudes)

|si -oj | < 
|sk -ol |

Unfolding (S*O)*(S*O)
Preferential choice 

oi <oj

Scaling of stimuli
(O * O) 

MDS
(O*O)*(O*O)

|oi -oj | < |ok -ol |

Individual differences in
Multidimensional Scaling

S * (O*O) * (O*O)

Scaling of people



Psychometric Theory: A conceptual Syllabus
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Measurement and scaling
X1

L1

Inferring latent values from observed values



Types of Scales: Inferences from 
observed variables to Latent variables

• Nominal
• Ordinal
• Interval

• Ratio

• Categories
• Ranks (x > y)
• Differences
– X-Y > W-V

• Equal intervals with a 
zero point =>
– X/Y > W/V



Mappings and inferences

Observed data

La
te

nt
 v

ar
ia

bl
e 

(c
on

st
ru

ct
)

O1 O2 O3 O4

L1

L2

L3

L4



Ordinal Scales

• Any monotonic transformation will preserve 
order

• Inferences from observed to latent variable are 
restricted to rank orders

• Statistics: Medians, Quartiles, Percentiles
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Interval Scales

• Possible to infer the magnitude of differences 
between points on the latent variable given 
differences on the observed variable
X is as much greater than Y as Z is from W

• Linear transformations preserve interval 
information 

• Allowable statistics: Means, Variances
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Ratio Scales

• Interval scales with a zero point
• Possible to compare ratios of magnitudes (X is 

twice as long as Y)



The search for 
appropriate scale

• Is today colder than yesterday? (ranks)
• Is the amount that today is colder than yesterday more than the 

amount that yesterday was colder than the day before? 
(intervals)
– 50 F - 39 F  < 68 F - 50 F
– 10 C - 4 C < 20 C - 10 C
– 283K - 277K < 293K -283K

• How much colder is today than yesterday?
– (Degree days as measure of energy use)
– K as measure of molecular energy



Gas consumption by degree days (65-T)

/Users/Bill

0 10 20 30 40 50

/Users/Bill

0
5

1
0

1
5

Heating demands (therms) by house and Degree Days

degree days

T
h

e
rm

s

Energy efficient with fireplace

Energy efficient no fireplace

Conventional



Latent and Observed Scores
The problem of scale

Much of our research is concerned with making 
inferences about latent (unobservable) scores based 
upon observed measures. Typically, the relationship 
between observed and latent scores is monotonic, but 
not necessarily (and probably rarely) linear. This leads 
to many problems of inference.  The following 
examples are abstracted from real studies.  The names 
have been changed to protect the guilty.



Effect of teaching upon  performance

   A leading research team in motivational and educational 
psychology was interested in the effect that different 
teaching techniques at various colleges and universities 
have upon their students.  They were particularly 
interested in the effect upon writing performance of 
attending a very selective university, a less selective 
university, or a two year junior college.  

   A writing test was given to the entering students at three 
institutions in the Boston area.  After one year, a similar 
writing test was given again.  Although there was some 
attrition from each sample, the researchers report data 
only for those who finished one year.  The pre and post 
test scores as well as the change scores were as shown 
below:



Effect of teaching upon performance

Pretest Posttest Change
Junior College

1 5 4
Non-selective
university 5 27 22
Selective
university 27 73 45

From these data, the researchers concluded that the quality of
teaching at the very selective university was much better and
that the students there learned a great deal more.  They
proposed to study the techniques used there in order to apply
them to the other institutions.



Effect of Teaching upon 
Performance?
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 Another research team in motivational and educational
psychology was interested in the effect that different teaching
techniques at various colleges and universities have upon their
students.  They were particularly interested in the effect upon
mathematics performance of attending a very selective
university, a less selective university, or a two year junior
college.  A math test was given to the entering students at
three institutions in the Boston area.  After one year, a similar
math test was given again.  Although there was some attrition
from each sample, the researchers report data only for those
who finished one year.  The pre and post test scores as well as
the change scores were:

Pretest Posttest Change
Junior College

27 73 45
Non-selective
university 73 95 22
Selective
university 95 99 4
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A leading cognitive developmentalist believed that there is a
critical stage for learning spatial representations using maps.
Children younger than this stage are not helped by maps, nor
are children older than this stage.  He randomly assigned 3rd,
5th, and 7th grade students into two conditions (nested within
grade), control and map use.  Performance was measured on a
task of spatial recall (children were shown toys at particular
locations in a set of rooms and then asked to find them again
later.  Half the children were shown a map of the rooms before
doing the task.

No map Maps
3rd grade 5 27
5th grade 27 73
7th grade 73 95



Spatial reasoning facilitated 
by maps at a critical age
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Another cognitive developmentalist believed that there is a
critical stage but that it appears earlier than previously
thought. Children younger than this stage are not helped by
maps, nor are children older than this stage.  He randomly
assigned 1st, 3rd, 5th, and 7th grade students into two
conditions (nested within grade), control and map use.
Performance was measured on a task of spatial recall (children
were shown toys at particular locations in a set of rooms and
then asked to find them again later.  Half the children were
shown a map of the rooms before doing the task.

No map Maps
1st grade 2 12
3rd grade 12 50
5th grade 50 88
7th grade 88 98



Spatial Reasoning is 
facilitated by map use at a 
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Cognitive-neuro psychologists believe that damage to the
hippocampus affects long term but not immediate memory.  As
a test of this hypothesis, an experiment is done in which
subjects with and without hippocampal damage are given an
immediate and a delayed memory task.  The results are
impressive:

Immediate Delayed
Hippocampus intact 98 88
Hippocampus
damaged

95 73

From these results the investigator concludes that there are
much larger deficits for the hippocampal damaged subjects on
the delayed rather than the immediate task. The investigator
believes these results confirm his hypothesis.  Comment on the
appropriateness of this conclusion.



Memory = f(hippocampal 
damange * temporal delay)
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An investigator believes that caffeine facilitates attentional
tasks such that require vigilance.  Subjects are randomly
assigned to conditions and receive either 0 or 4mg/kg caffeine
and then do a vigilance task.  Errors are recorded during the
first 5 minutes and the last 5 minutes of the 60 minute task.
The number of errors increases as the task progresses but this
difference is not significant for the caffeine condition and is for
the placebo condition.   

1st block Last block
Placebo (0 mg/kg) 8 40
Caffeine (4 mg/kg) 4 23

Errors=f(caffeine * time on task)



Errors=f(caffeine * time on task)
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Arousal is a fundamental concept in many psychological
theories.  It is thought to reflect basic levels of alertness and
preparedness.  Typical indices of arousal are measures of the
amount of palmer sweating.  This may be indexed by the
amount of electricity that is conducted by the fingertips.
Alternatively, it may be indexed (negatively) by the amount of
skin resistance of the finger tips. The Galvanic Skin Response
(GSR) reflects moment to moment changes, SC and SR reflect
longer term, basal levels.

High skin conductance (low skin resistance) is thought to
reflect high arousal.

Measuring Arousal



Anxiety is thought to be related to arousal. The following data
were collected by two different experimenters.  One collected
Resistance data, one conductance data.   

Resistance Conductance
Anxious 2, 2 .5, .5
Low anx 1, 5 1,  .2

The means were
Resistance Conductance

Anxious 2 .5
Low anx 3 .6

Experimenter 1 concluded that the low anxious had higher
resistances, and thus were less aroused.  But experimenter 2
noted that the low anxious had higher levels of skin
conductance, and were thus more aroused.

How can this be?

Measuring Arousal



Conductance = 1/Resistance
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Performance, ability, and 
task difficulty

Difficulty

Latent 
Ability

-4.00 0.05 0.02 0.01 0.00
-2.00 0.27 0.12 0.05 0.02
0.00 0.73 0.50 0.27 0.12
2.00 0.95 0.88 0.73 0.50
4.00 0.99 0.98 0.95 0.88

-4  to -2 0.22 0.10 0.04 0.02
-2  to -0 0.46 0.38 0.22 0.10
 0  to   2 0.22 0.38 0.46 0.38
2  to   4 0.04 0.10 0.22 0.38

0.98
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Performance and Task 
Difficulty

Note that equal differences along the latent ability
dimension result in unequal differences along the
observed performance dimension.  Compare particularly
performance changes resulting from ability changes
from -2 to 0 to 2 units.  

This is taken from the standard logistic transformation
used in Item Response Theory that maps latent ability
and latent difficulty into observed scores.  IRT
attempts to estimate difficulty and ability from the
observed patterns of performance.

Performance = 1/(1+exp(difficulty-abil ity) )



Decision making and the benefit 
of extreme selection ratios

• Typical traits are approximated by a normal distribution.
• Small differences in means or variances can lead to large 

differences in relative odds at the tails
• Accuracy of decision/prediction is higher for extreme 

values.
• Do we infer trait mean differences from observing 

differences of extreme values?

• (code for these graphs at 
• http://personality-project.org/r/extremescores.r)



Odds ratios as f(mean difference, extremity)
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The effect of group differences on 
likelihood of extreme scores
Difference =.5 sigma Difference =1.0 sigma
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The effect of differences of variance 
on odds ratios at the tails
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Percentiles are not a linear metric
and percentile odds are even worse!

• When comparing changes due to interventions or 
environmental trends, it is tempting to see how many people 
achieve a certain level (eg., of educational accomplishment, or 
of obesity), but the magnitude of such changes are sensitive to 
starting points, particularly when using percentiles or even 
worse, odds of percentiles. 

• Consider the case of obesity:



Obesity gets worse over time 
• “Over the last 15 years, obesity in the US has doubled, going 

from one in 10 to one in five. But the prevalence of morbid 
obesity has quadrupled, meaning that the number of people 
100 pounds overweight has gone from one in 200 to one in 
50. And the number of people roughly 150 pounds overweight 
has increased by a factor of 5, spiraling from one in 2000 to 
one in 400.”

•  “… The fact that super obesity is increasing faster than other 
categories of overweight suggests a strong environmental 
component (such as larger portions).  If this were a strictly 
genetic predisposition, the numbers would rise only in 
proportion to the increase in other weight categories.” (Tufts Health 
Newsletter, Dec. 2003, p 2)



Is obesity getter worse for the 
super obese?   - Seemingly

Label Definition Odds Change 
in Odds

Obese BMI = 30
40 lb for 
5’5”

1/10 to 
1/5

2

Morbid 
Obese

BMI = 40
100 lb

1/200 to
1/50

4

Super 
Obese

BMI = 50
150 lb

1/2000 
to
1/400

5



Is obesity getter worse for 
the super obese?   -- No

Label Definition Odds Change 
in Odds

z score Change 
in z

Obese BMI = 30 1/10 to 
1/5

2 -1.28
  -.84

0.44

Morbid 
Obese

BMI = 40 1/200 to
1/50

4 -2.58
-2.05

0.53

Super 
Obese

BMI = 50 1/2000 
to
1/400

5 -3.29
-2.81

0.48



Psychometric Theory: A conceptual Syllabus
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