Psychometric Theory Scale Construction and Factor Analysis Homework

Scale construction - I

- You are considering developing a scale to measure trait X. You sample 12 items from the domain of "X-ness" in scale A and find that their average variance is .25 and that their average covariance is .10.
- What is the variance of this 12 item test?
- What is the alpha reliability of this test?
- What is the average interitem correlation?

- Another set of 10 items (B), sampled from a similar domain has an average variance of .3 and an average covariance of .05.
- What is the variance of this set of items.
- What is the alpha for this set of items.
- What is the average correlation for this set?

- The average covariance of between the items of set A and set B is .03.
- What is the average correlation between items in sets A and B?
- What is the covariance of sets A and B?
- What is the correlation between set A and B

- Given the two subscales found previously, what is the variance of the composite scale made up of subscale A and subscale B?
- What is the alpha reliability of this composite?
- What is the general factor saturation of this composite (how much of the total test variance is a general factor)?

- What is the correlation of an average item in subtest A with the total score on scale A?
- What is the correlation of an average item in subtest B with the total score on scale B?
- What is the correlation of an average item in subtest A with the total score on the composite of subtests A and B?

- For a 5 item scale with item variances of 1 and item covariances of 0, what is the correlation of an item with the total scale?
- For a 10 item scale with item variances of 1 and item covariances of 0, what is the correlation of an item with the total scale?

- The item loadings on the first factor of the correlation matrix from subset A are all .632.
- What is the communality for each item?
- What is the eigen value of this factor?

- Consider the following factor loading matrix
- What are the correlations between V_1, V_2, V_3 , and V_5 ?
- What the communalities and eigen values for this matrix
- Draw the structure of this factor matrix

	۴ı	F_2	F ₃	h²
VI	.9	.0	.0	
V_2	.8	.0	.0	
V ₃	.7	.0	.0	
V ₄	.0	.7	.4	
V5	.3	.6	.0	
V ₆	.0	.5	.0	
V ₇	.0	.0	.5	
V ₈	.0	.0	.4	
V ₉	.0	0	.3	
eigen value				

- Draw the structure associated with this factor matrix
- Find the correlations between the variables.

	F۱	F ₂	F ₃
Vı	.8	.0	.0
V_2	.7	.0	.0
V ₃	.6	.0	.0
V ₄	.0	.7	.0
V_5	.0	.6	.0
V_6	.0	.5	.0
V ₇	.0	.0	.5
V_8	.0	.0	.4
V9	.0	0	.3

- Consider the following factor loading matrix with a second level factor of with loadings of .9, .8 and .7
- What are the correlations between VI, V2, V3, and V5?
- Draw the structure.

	F۱	F ₂	F ₃
Vı	.8	.0	.0
V ₂	.7	.0	.0
V ₃	.6	.0	.0
V ₄	.0	.7	.0
V ₅	.0	.6	.0
V_6	.0	.5	.0
V ₇	.0	.0	.5
V ₈	.0	.0	.4
V ₉	.0	0	.3

Psychometric Theory Homework 3

- You are considering developing a scale to measure trait X. You sample 12 items from the domain of "X-ness" and find that their average variance is .25 and that their average covariance is .10.
- What is the variance of this 12 item test?

•
$$V_t = k^*V_a + k^*(k-1)^*C_a =$$

•
$$|2^*.25 + |2^*||^*.| = V_t = |6.2$$

- What is the alpha reliability of this test?
 - Alpha = $\{(V_t \sum V_a)/V_t\}^*\{k/(k-1)\}$
 - $alpha = (16.2 12^{*}.25)/16.2^{*}(12/11) = .89$
- What is the average interitem correlation?

•
$$r_{xy} = c_{xy}/sqrt(V_x * V_y) = .1/sqrt(.25*.25) = .4$$

- Another set of 10 items (B), sampled from a similar domain has an average variance of .3 and an average covariance of .05.
- What is the variance of this set of items.
 - $V_t = k^*V_a + k^*(k-1)^*C_a =$
 - $10^{*}.30 + 10^{*}9^{*}.05 = V_t = 7.5$
- What is the alpha for this set of items.
 - Alpha = $\{(V_t \sum V_a)/V_t\} * \{k/(k-1)\}$
 - $alpha = (7.5 10^{*}.30)/7.5^{*}(10/9) = .67$
- What is the average correlation for this set?

• $r_{xy} = c_{xy}/sqrt(V_x * V_y) = .05/sqrt(.30*.30) = .167$

- The average covariance of between the items of set A and set B is .03.
- What is the average correlation between items in sets A and B?
 - $r_{xy} = c_{xy}/sqrt(V_x * V_y) = .03/sqrt(.25*.3) = .1095$
- What is the covariance of sets A and B?
 - $C_{xy} = k_x * k_y * c_{xy} => 12 * 10 * .03 = 3.6$
- What is the correlation between set A and B

•
$$r_{xy} = c_{xy}/sqrt(V_x * V_y) => r_{ab} = 3.6/sqrt(16.2*7.5) = .327$$

• Given the two subscales found previously, what is the variance of the composite scale made up of subscale A and subscale B?

•
$$V_{(a+b)} = V_a + V_b + 2C_{ab} = 16.2 + 7.5 + 2* 3.6 = 30.9$$

- What is the alpha reliability of this composite?
 - Alpha = $\{(V_t \sum V_a)/V_t\} * \{k/(k-1)\}$
 - $alpha = (30.9 (12 \times .25 + 10 \times .3))/30.9 \times (22/21) = .84$
- What is the general factor saturation of this composite (how much of the total test variance is a general factor)?

General factor of two scales

	Α	В
Α	kava+ka*(ka-1)ca	$k_{a} * k_{b} * c_{ab}$
В	$k_{a}*k_{b}*c_{ab}$	k _b v _b +k _b *(k _b -1)c _b

$$= 16.2 + 7.5 + 2* 3.6 = 30.9$$

		Α	В
V _{g=}	Α	ka* ka *cab	$k_{a}*k_{b}*c_{ab}$
	В	$k_a * k_b * c_{ab}$	k _b * k _b *c _{ab}

- What is the correlation of an average item in subtest A with the total score on scale A?
 - $r_{xy} = c_{xy}/sqrt(V_x * V_y)$

•
$$C_{xy} = v_a + (k-1)*c_a = .25 + 11*.1 = 1.35$$

•
$$V_x = v_a = .25$$
 $V_y = V_A = 16.2$ $r_{aA} = 1.35/sqrt(16.2*.25) = .67$

- What is the correlation of an average item in subtest B with the total score on scale B?
 - $C_{xy} = v_a + (k-1)*c_a = .30 + 9 * .05 = .75$
 - $V_x = v_a = .30$ $V_y = V_A = 7.5$ $r_{aA} = .75/sqrt(7.5^*.3) = .50$

• What is the correlation of an average item in subtest A with the total score on the composite of subtests A and B?

•
$$r_{xy} = c_{xy}/sqrt(V_x * V_y)$$

•
$$C_{xy} = .25 + 11 * .1 + 10 * .03 = 1.65$$

•
$$V_x = v_a = .25$$
 $V_y = V_{AB} = 30.9$

• $V_{(a+b)} = V_a + V_b + 2C_{ab} = 16.2 + 7.5 + 2* 3.6 = 30.9$

•
$$r_{aAB} = 1.65/sqrt(30.9*.25) = .59$$

• For a 5 item scale with item variances of 1 and item covariances of 0, what is the correlation of an item with the total scale?

•
$$r_{xy} = c_{xy}/sqrt(V_x * V_y)$$

•
$$c_{xt} = v_a + (k-1)*c_a = 1 + 4*0 = 1$$

•
$$V_x = I$$
 $V_t = k^*V_a + k^*(k-I)^*C_a = 5$

•
$$r_{xt} = 1/sqrt(1*5) = .44$$

 For a 10 item scale with item variances of 1 and item covariances of 0, what is the correlation of an item with the total scale?

•
$$r_{xt} = 1/sqrt(1*10) = .312$$

- The item loadings on the first factor of the correlation matrix from subset A are all .632.
- What is the communality for each item?
 - communality is amount of variance in an item accounted for by all the factors = $\sum f_i^2 = .632^2 = .4$
- What is the eigen value of this factor?
 - Eigen value is the amount of variance in all the items accounted for by a factor (sum over items)
 - $\sum f_{ij}^2 = 12 * .632^2 = 3.6$

- Consider the following factor loading matrix
- What are the correlations between V_1, V_2, V_3 , and V_5 ?
- What the communalities and eigen values for this matrix

	F۱	F ₂	F ₃	h²
VI	.9	.0	.0	.81
V ₂	.8	.0	.0	.64
V ₃	.7	.0	.0	.49
V ₄	.0	.7	.4	.65
V ₅	.3	.6	.0	.45
V ₆	.0	.5	.0	.25
V ₇	.0	.0	.5	.25
V ₈	.0	.0	.4	.16
V9	.0	0	.3	.09
eigen value	2.03	1.10	.66	

	VI	V2	V 3	V5
VI	.81			
V2	.72	.64		
V3	.63	.56	.49	
V5	.27	.24	.21	.45

Factor Analysis 3 orthogonal factors

Correlation matrix of uncorrelated factors

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1.00 0.56 0.48 0.00 0.00 0.00 0.00 0.00 0.00 [2,] 0.56 1.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00 [4,] 0.00 0.00 0.00 1.00 0.42 0.35 0.00 0.0 0.00 [5,] 0.00 0.00 0.00 0.42 1.00 0.30 0.00 0.0 0.00 [6,] 0.00 0.00 0.00 0.35 0.30 1.00 0.00 0.0 0.00 [7,] 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.3 0.24 [8,] 0.00 0.00 0.00 0.00 0.00 0.00 0.30 I.0 0.20 [9,] 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.2 I.00

- Consider the following factor loading matrix with a second level factor of with loadings of .9, .8 and .7
- What are the correlations between VI, V2, V3, and V5?

	F۱	F ₂	F ₃		
Vı	.8	.0	.0		•
V_2	.7	.0	.0	VI	.6
V ₃	.6	.0	.0	∨2	
V ₄	.0	.7	.0		••
V_5	.0	.6	.0	V3	.4
V_6	.0	.5	.0	V5	
V ₇	.0	.0	.5		
V ₈	.0	.0	.4		
V9	.0	0	.3		

	VI	V2	V 3	V5
VI	.64			
V2	.56	.49		
V3	.48	.56	.36	
V5	.35	.30	.26	.36

Correlation matrix of correlated factors

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1.00 0.56 0.48 0.40 0.35 0.29 0.30 0.25 0.20 [2,] 0.56 1.00 0.42 0.35 0.30 0.25 0.26 0.22 0.18 [3,] 0.48 0.42 1.00 0.30 0.26 0.22 0.23 0.19 0.15 [4,] 0.40 0.35 0.30 1.00 0.42 0.35 0.24 0.20 0.16 [5,] 0.35 0.30 0.26 0.42 1.00 0.30 0.20 0.17 0.13 [6,] 0.29 0.25 0.22 0.35 0.30 1.00 0.17 0.14 0.11 [7,] 0.30 0.26 0.23 0.24 0.20 0.17 1.00 0.30 0.24 [8,] 0.25 0.22 0.19 0.20 0.17 0.14 0.30 1.00 0.20 [9,] 0.20 0.18 0.15 0.16 0.13 0.11 0.24 0.20 1.00

Orthogonal factors Loadings: Factor J Factor 2 Factor 3

[1,] 0.70	0.30	0.25
[2,] 0.61	0.26	0.22
[3,] 0.52	0.22	0.19
[4,] 0.24	0.63	0.18
[5,] 0.21	0.54	0.16
[6,] 0.17	0.45	0.13
[7,] 0.17	0.15	0.56
[8,] 0.14	0.12	0.46
[9,] 0.11	0.10	0.37

Oblique factors

St	ructur	e Matr	ix
Facto	orl Fac	ctor2 F	actor3
[,]	0.8	0.0	0.0
[2,]	0.7	0.0	0.0
[3,]	0.6	0.0	0.0
[4,]	0.0	0.7	0.0
[5,]	0.0	0.6	0.0
[6,]	0.0	0.5	0.0
[7,]	0.0	0.0	0.6
[8,]	0.0	0.0	0.5
[9,]	0.0	0.0	0.4

Factor correlations

[,1] [,2] [,3] [1,] 1.00 0.72 0.63 [2,] 0.72 1.00 0.56 [3,] 0.63 0.56 1.00

Schmid-Leiman orthogonalization

g fact	or Fact	orl Fac	ctor2 F	actor3	h2 u2
[,]	0.72	0.35	0.00	0.00 0	.64 0.36
[2,]	0.63	0.31	0.00	0.00 0	.49 0.51
[3,]	0.54	0.26	0.00	0.00 0	.36 0.64
[4,]	0.56	0.00	0.42	0.00 0	.49 0.51
[5,]	0.48	0.00	0.36	0.00 0	.36 0.64
[6,]	0.40	0.00	0.30	0.00 0	.25 0.75
[7,]	0.42	0.00	0.00	0.43 0	.36 0.64
[8,]	0.35	0.00	0.00	0.36 0	.25 0.75
[9,]	0.28	0.00	0.00	0.29 0	.16 0.84

